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Abstract

An active database management system (ADBMS) augments a
conventional DBMS with the capability to automatically react to stim-
uli occurring within and outside a database. Intuitively, this requires
a DBMS to possess some degree of “knowledge”. Such knowledge can
be provided by incorporating a DBMS with a set of rules which deter-
mine the actions a DBMS should automatically execute when certain
events and conditions arise. The advantages of ADBMSs have been
well documented. ADBMSs can be used to enforce and manage in-
tegrity constraints, provide security in databases, and act as alerters
or triggers. However, it has also been noted that determining the effect
of interaction between groups of rules is difficult at best. For example,
one would like to be sure that the execution of some chain of rules is
guaranteed to terminate; or that a set of rules interacts in a manner
that is consistent with the intended semantics conceived by their de-
signer. The purpose of this paper is to examine Model Checking as a
possible framework for automatically analyzing ADBMSs. Our frame-
work provides the basis for development of a tool that can be used to
isolate properties of a given rule set’s behavior. Such a verification
tool is critical for supporting the pre-development analysis and design
of realistic ADBMSs. We also implemented significant parts of our
framework directly in the verification tool Spin by writing a GUI for
rule design and a Promela code generator.

www.manaraa.com



Contents

1 Introduction 3
1.1 Active Database Management Systems . . . .. ... ... .. 3
1.2 Model Checking . . . . . .. .. . 4
1.3 Motivation . . . .. ... 4

2 ADBMS Functionality 6
2.1 The underlying DBMS . . . .. ... ... ... ... 7
2.2 Adding Rules to the DBMS . . . ... ... ... ... ... 8

221 Events . . . . . ... 8
2.2.2 Conditions . . . . ... oo 9
223 Actions . ... 10
2.3 Definition of ECA rules . . .. ... .. ... ... ...... 12
2.4  Execution Models . . . . . ... ..o 13
2.4.1 Physical ADBMS Components . . . .. .. .. ... .. 13
2.4.2 Conflict Resolution . . . . . . . ... .. ... ... .. 15
2.4.3 Execution Semantics of Starburst . . . . .. .. .. .. 17
2.5 Previous Efforts to analyze ADBMS Behavior . . . ... ... 21

3 Our Model of an ADBMS 23
3.1 The Model . . . . . . . . ... 23
3.2 The Interaction between Environment and System . . . . . . 26
3.3 The States of our Model . . . . . . . ... ... 28
3.4 The Transition Relations of our Model . . . . . .. ... ... 29
3.5 Labeling Models with Propositions . . . . .. ... ... ... 32

4 Event-Action Temporal Logic 33
4.1 Syntax of EATL . . . . .. . ... .. ... ... 33
4.2 Semantics of EATL . . . . . ... ... . ... ... ..., 35
4.3 Branching-Time Operations in EATL . .. .. .. ... ... 37

4.3.1 Expressing Branching-Time Properties . . . . . . . .. 37

4.3.2 Expressing AGand EG° . . . . .. ... 38

4.3.3 Expressing AF¢and EF© . . . .. ..o 0000 41

4.3.4 Expressing AU°and EU® . . . . . ... ... ... ... 41

4.4 Practical Properties for our Starburst Model . . . . . . . .. 43
2

www.manharaa.com




5 ADBMS Model Checking 47

5.1 ADBMS Model Checking Environment . . . . . .. ... ... 50
5.2 Representation of Rules, States, and Transitions . . . . . . . 51
5.3 Rule Information . . . . . . . .. ... 52
5.4 The Consideration Set . . . . . . . . . . ... ... ... ... 52
5.0 States and State Transitions . . . . . . . . . . . .. ... ... 58
5.5.1 The Environment Process . . . ... ... ... .... 59

5.5.2 The System Process . . . ... ... ... ... .... 62

5.5.3 The Environment Process revisited . . . . . . ... .. 63

5.6 ADBMS Verification using Spin . . . . . . . ... 64
5.6.1 Termination . . . . . . . . . ... ... ... 64

5.6.2 Raule Integrity Constraints . . . . . . .. .. ... ... 65

5.6.3 Confluence . . . . . . . . . ... 65

5.6.4 A Tool Box of Properties . . . . . . . .. .. ... ... 66

5.6.5 Results of our ADBMS Verification . . . . .. ... .. 67

6 Conclusions 68
A Promela Specification of Example 7 70

1 Introduction

1.1 Active Database Management Systems

With a conventional DBMS; insertions, deletions, and other manipulations of
data are performed via user commands or application programs that modify
a database. From this perspective, a DBMS is passive, since it only responds
to commands that it receives explicitly [14]. This potentially limiting charac-
teristic of DBMSs is the primary motivation behind recent attempts to inte-
grate database systems with sets of rules that define the circumstances when
a DBMS may execute some actions automatically [18]. An active database
management system (ADBMS) provides this additional capability over a con-
ventional, “passive” database by adding features allowing one to define rules
that will be processed automatically when certain events, such as changes to
the database state, arise [12]. Thus, issues such as enforcement and man-
agement of integrity constraints, database security, and alerting users when
important events occur may be automated [1, 18].
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As the popularity of active database management systems has grown, so
has the demand for tools assisting ADBMS designers, users, and administra-
tors who wish to analyze how a group of rules will behave [12]. Predicting
how a group of rules will interact with one another in all situations, however,
is difficult at best [20]. In spite of these facts, the supply of such tools has
lagged far behind demand. In light of this, methods for analyzing behavior of
rules under the Starburst rule system represent a major step in the right di-
rection and provide a foundation for developing interactive tools that would
aid ADBMS designers in predicting rule behavior [1, 8, 21, 22]. This makes
Starburst an important benchmark against which new efforts at analyzing
rule systems should be compared.

1.2 Model Checking

Model Checking is an approach to validating hardware and software, which
has become popular within the past decade [7]. Under this approach, verifi-
cation is not performed on the actual system. Instead, one builds an abstract
model of the system that excludes many real features of the actual physical
system, allowing one’s focus to be directed towards only those features neces-
sary to verify a particular property at hand [7]. Properties of such a system
are written in some type of temporal logic [11, 15, 16, 17]. Ultimately, one
is interested in verifying the correctness of these properties with respect to
the abstract model, and then extrapolate these results to the actual system.

Model Checking offers some unique advantages over other popular ap-
proaches of verification. The most distinct advantage is automation [7, 11].
Model Checking relies on efficient algorithms that serve as the foundation
for model checkers, which implement these algorithms [7, 11, 17]. Given an
abstract model of a system and a property specified in some temporal or
modal logic, a model checker automatically determines whether the property
holds in that particular model [11]. Perhaps even more importantly, model
checkers can be used to construct an execution trace that shows why a prop-
erty did not hold with respect to a given model, facilitating future debugging
of the system [10, 4].

1.3 Motivation

According to [16], computerized systems can be broken down into two distinct
categories: transformational and reactive. In the transformational view, a
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system receives input data, performs some operation on that data, and pro-
duces some output upon termination. This view implies that the abstract
model of a transformational system consists of an initial state, some inter-
mediate states, and a final state [16].

The computational paradigm of reactive systems, on the other hand, is
not so intuitive. Reactive systems do not have principal beginning and ending
states. As their name implies, reactive systems may respond to a variety of
events at any time. Because of this, Pnueli suggests that modeling a reactive
system requires enhancing the model by incorporating information about the
system’s interaction with its environment [16]. This is necessary if we wish
to accurately reason about the system’s behavior in response to a particular
event. Thus, an event can be seen as a transition from one state to the
next, and a series of events can be viewed as a possible execution path of the
system. In order to reason about such sequences of events, Pnueli proposes
the use of temporal logic to code specifications of a system.

Application of temporal logics to specify system properties is nothing
new. Efficient model checkers for linear-time temporal logics (LTL) and
branching-time temporal logics, such as CTL, already exist [7, 11, 15]. These
model checkers make use of special algorithms and data structures that allow
representations of abstract models to be stored compactly, and specification
formulas to be analyzed automatically [11]. Unfortunately, both CTL and
LTL can only be naturally applied to closed systems, which depend only on
states of the system. Open systems, on the other hand, must be characterized
by their behavior in a particular environment [2]. Any ADBMS is reactive
since its functionality requires that it be able to respond automatically to
certain events [12]. Tt may also be characterized as open since its behavior
may change according to decisions made by its environment [20]. Thus, it
would be difficult to directly apply CTL or LTL as a means of describing
an ADBMS’s behavior without explicitly including assumptions about an
ADBMS'’s environment.

Therefore, the aim of this paper is to effectively develop a Model Check-
ing methodology for the problem of verifying properties of active database
management systems. We present a framework for constructing an abstract
model of an ADBMS that captures the behavior of the ADBMS in the context
of any decisions made by its environment. In order to empirically evaluate
our methodology, we apply our framework toward analyzing a sample rule
base, which will be constructed using an ADBMS similar to the Starburst
rule system [1, 8, 21, 22|. However, one should realize that the true advan-
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tage and power of our approach is its flexibility. Unlike current efforts at
analyzing rule systems, our application of Model Checking can be used as
a generic framework for any ADBMS regardless of its unique operational
semantics. Furthermore, we offer Event-Action Temporal Logic (EATL), a
customized branching-time temporal logic that can be used to specify prop-
erties we wish to verify under this model. Finally, we demonstrate how exist-
ing model checkers can be creatively applied towards analyzing ADBMSs. In
particular, we formally analyze rule processing for the Starburst rule system
using Spin [4], an LTL model checker, and its modeling language, Promela.
We show how, given explicit information about Starburst’s rule processing
environment, Promela can be used to model different rule processing scenar-
ios. Moreover, we have developed a simple, interactive GUI environment for
generating Promela models of these rule processing scenarios. We believe
the development of different “libraries”, each generating models of unique
ADBMSs could be consolidated under a single, user-friendly interface. In-
deed, such a tool would make it feasible for any ADBMS designer, user, or
administrator to effectively analyze rule behavior.

2 ADBMS Functionality

Similar to conventional DBMSs, there is a general consensus about what
functional components an ADBMS should possess. These additional features
of an ADBMS are considered the minimum essentials necessary to give a
conventional DBMS an “active” functionality [12]. Starburst is no exception,
and clearly reflects this consensus. Therefore, our approach to explaining
necessary ADBMS functionality is by means of Starburst as an example.
We begin with an ordinary DBMS and incrementally construct an ADBMS
in the spirit of the Starburst rule system [1, 8, 21, 22]. At the end of this
section, we present a simple functioning rule system, which offers a subset of
Starburst’s features. This simple system will serve as our running example
in unfolding our proposed ADBMS Model Checking methodology.

The ADBMS we design is simple, but practical; it keeps a database stor-
ing employee and salary information for a fictitious corporation. We design
a number of rules reflecting the organization’s bonus and salary policy. Ulti-
mately, we wish to modelcheck our rule system in order to verify the consis-
tency of its implementation with our design. In Section 4, we discover that,
although our sample ADBMS is small, subtle mistakes in rule design can still
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emp table table containing employee information

empid unique employee id number

name name of employee

salary current salary of employee

rank range from 1..10 of possible ranks (10 is the highest)
bonus table | table containing salary increase information

empid unique employee id number

raiseamnt dollar amount of next raise

Table 1: Definition of tables and fields in our corporate database.

occur quite easily.

2.1 The underlying DBMS

As their name implies, an ADBMS must subsume a DBMS; it must provide
all the functionality of a DBMS and can in fact be used as a conventional
system by simply ignoring its active components [12]. Tt is important to note
that the underlying DBMS of a rule system can be based on any type of
data model. For example, HIPAC [14] builds its rule system over an object-
oriented DBMS, but the Starburst ADBMS is an extension of the Starburst
relational DBMS [21]. Although HiPAC and Starburst rely on different un-
derlying data models, both provide the standard ADBMS functionality de-
scribed in this section. The following example defines a simple relational
DBMS scheme we use as part of our running example throughout this paper.

Example 1 Consider the following relational DBMS scheme, consisting of
two tables.

emp(empid, name, salary, rank)
bonus(empid, raiseamnt).

Assume these tables make up the database of our rule system which maintains
employee and salary information for some corporation. Table 1 summarizes
the contents of the database (the primary key for each table is underlined).
As suggested earlier, we wish to define some rules over this scheme.
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2.2 Adding Rules to the DBMS

Given the relational database scheme in the previous example, we need a
mechanism for defining rules over it. We intend to design a set of rules
that automatically enforces our corporate’s policy regarding employee salaries
and bonuses. According to [12], an ADBMS must provide a mechanism for
defining and managing Event-Condition-Action (ECA) rules. The ECA rule
paradigm follows the syntax:

ON [Event] IF [Condition] DO [Action].

By examining each syntactic category (i.e. event, condition, action) of this
statement in detail we naturally gain the required insights into its semantics.

2.2.1 Events

It is important to distinguish between events and event types. For instance,
multiple events may occur for a given event type [12]. Table 2 depicts this
idea. It is necessary to define an event for each rule in our rule base. After all,
this attribute determines the circumstances under which the rule is initially
signaled or triggered [12, 14]. The events we may choose from depend on the
event types our rule system is able to recognize. Starburst recognizes data
modification operations as possible rule triggering events [1, 8, 21, 22|. In the
case of the three data modification operations seen in Table 2, most ADBMSs,
including Starburst, allow us to augment the name of the database table and
even the field(s) within that table to which the event (i.e. insert, delete, up-
date) applies [1, 14]. The next example demonstrates this convention. We
initially only define the triggering events for our rules.

Example 2 Assume that our ADBMS recognizes only data modification
event types. Then our rule base may consist of rules triggered by an inser-
tion, deletion, or update to the tables in the database. Table 3 summarizes
our initial design sketch of three rules ry, ry, and r3 and their respective
triggering event.

In Table 3 we observe that whenever a user initiates an update to the
rank field in the emp table, rule r; will be triggered. In a similar fashion,
we may determine what triggers the other two rules. At this point, we have
only determined what triggers each of our rules. In order to complete our
design, we need to consider the conditions and actions of these ECA rules.

www.manaraa.com



EVENT TYPE EVENT

Data modification | insert, delete, update
Data retrieval SQL select statement
Absolute time 12:00AM

Relative time ”4 hours after an update”
Periodic time “each Tuesday at 8:00AM”

Table 2: Events and their event type category.

Rule | triggering event

T ON update to emp(rank) ...

T9 ON update to bonus(raiseamnt) ...

s ON update to emp(salary) ...

Table 3: Three rules and the events that signal each.

2.2.2 Conditions

The event of a rule determines under which circumstances it is triggered.
The next relevant portion of an ECA rule is its condition, which determines
whether or not the rule is actually activated. Formally, a rule condition
defines the state that a database must have in order for a rule to execute
[12]. The condition may be expressed in two ways:

e as a predicate written in the DBMS query language, such as SQL, that
returns either TRUE or FALSE, or

e as a database query that returns either EMPTY or NOT EMPTY.

Starburst follows the first approach [1, 8, 21, 22]. We continue the design of
our rule base by specifying the conditions for the rules of Example 2.

Example 3 Table 4 defines what state our simple database must have in
order for each rule to be activated (i.e. it defines r;’s condition).

Examination of Table 3 in conjunction with Table 4 shows that r is acti-
vated whenever an employee’s rank is updated, and that employee’s new rank
is less than 5. We may reason about rule r3 in a similar manner. The condi-
tion for r5, on the other hand, always evaluates to TRUE. This simply means
that whenever an update on bonus(rank) occurs, the rule is immediately ac-
tivated [12, 22]. Such rules, where the rule’s condition always evaluates to
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Rule | activating condition

1 ...IF new emp(rank)<5 ...

79 ...IF TRUE ...

T3 ... IF emp(salary)> $50,000 ...

Table 4: Three rules and the conditions required for their activation.

TRUE, are commonly referred to as event-action (EA) rules which are often
used in practice [12, 19]. Therefore, many ADBMSs, including Starburst,
allow a rule designer to optionally omit a rule’s condition [21, 22].

2.2.3 Actions

The action of a rule is executed as a reaction to any triggering of a rule’s
event, when a rule’s condition holds [1, 8, 12, 14, 21, 22]. Such actions
essentially characterize the “reactive” behavior of an ADBMS discussed in
Subsection 1.3 [12]. Naturally, this is also what causes ADBMS behavior
to be so difficult to predict [1, 21]. An action may consist of a data mod-
ification operation, a data retrieval operation, a transaction operation (ie.
COMMIT/ABORT), or a call to external procedures or methods [12]. Star-
burst allows all of these to be defined as possible actions [1]. However, in
our examples, we limit ourselves to using only data modification and data
retrieval actions.

Recall from Example 2 that the first action type (data modification) also
constitutes an event type in Starburst. This means that the action of one rule
may automatically cause an event that triggers more rules. This cascaded
triggering of rules makes the prediction of rule behavior difficult as soon as
the number of rules in the system grows large and raises serious challenges
when attempting to design a sensible set of rules [1].

Example 4 We complete our set of ECA rules by specifying what action
should be taken when each rule is activated. Table 5 lists our rules and their
associated actions.

Table 6 allows a cascaded triggering of rules r; — 79 — 73 as a chain reac-
tion initiated by r;’s action triggering ro, and ry’s action, in turn, triggering
r3. In our example, the chain of events terminates at r3, since we do not
consider r3’s action (i.e. data retrieval) to be a triggering event. However,
such a small number of rules is uncommon and hides the unpredictability of

10

www.manaraa.com



rule | action performed

1 ... THEN update bonus(raiseamnt)

T9 ... THEN update emp(salary)

73 ... THEN retrieve emp(empid,name,salary,rank)

Table 5: Three rules and the actions they perform if activated.

Rule | ECA definition

T ON update to emp(rank)

IF new emp(rank) < 5

THEN update bonus(raiseamnt)

9 ON update to bonus(raiseamnt)

IF TRUE

THEN update emp(salary)

r3 ON update to emp(salary)

IF emp(salary) > $50,000

THEN retrieve emp(empid,name,salary,rank)

Table 6: Our complete set, R, of rules.

such rule systems present in realistic examples. For more substantial cases it
will be next to impossible for a designer to construct an unambiguous set of
rules [1] without any proper tool support. The next example demonstrates
one possible instance of what could go wrong if we are not careful when
designing rules.

Example 5 Suppose that we temporarily add two more rules to our current
set in Table 7.

Clearly, an event triggering r, or r5 would result in a cyclic execution of

Rule | ECA definition

T4 ON update to emp(salary)
IF TRUE

THEN update emp(rank)
Ts ON update to emp(rank)
IF TRUE

THEN update emp(salary)

Table 7: A non-terminating set of rules.

11
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these two rules that would never terminate. In fact, these two rules would
cause an employee’s salary to increase indefinitely! We can easily predict this
adverse behavior in our simple examples, but such design flaws may remain
undetected in a larger rule set with longer cycles.

2.3 Definition of ECA rules

The syntax of ECA rules provides a generic framework for logically design-
ing a rule base and reasoning about the behavior of the rules therein. Ta-
ble 6, for instance, reflects our corporation’s policy to automatically give
increased raises to promoted employees until they achieve a rank of five.
From that point on, an employee should receive the same raise upon being
promoted. The definition of new ECA rules must be possible either through
the ADBMS’s data definition language (DDL) or by adopting a new rule def-
inition language (RDL) [12]. HiPAC and Starburst adopt such RDLs, and,
although the syntax for defining new rules depends on the particular system
being used, both languages provide constructs for defining various events,
conditions, and actions [1, 14, 21, 22]. We adopt the notation of Starburst’s
RDL [1, 21, 22]. The following is a fragment of the syntax for rule definition
in Starburst:

create rule name
when cvent

[ if condition |
then action

Rule definition in Starburst closely matches the general format of ECA rules.
However, note that a rule’s condition is optional. This optional facility allows
Starburst to define EA rules. In our example, r has no condition (i.e. it is
an EA rule), and, therefore, the condition is coded as ”"IF TRUE”. Figures 1,
2, and 3 show how to express our rules using Starburst’s syntax. Reader’s
familiar with SQL certainly notice the SQL-like characteristics of this state-
ment. In fact, the conditions themselves are simply SQL predicates [22].
For those unfamiliar with SQL, Table 8 describes in detail the meaning of
each statement involved in the insertion of r; (from Figure 1). Commands
to insert the other two rules are similar and are given in Figures 2 and 3. An
informal explanation of these insertions is not provided, but may be obtained
by comparison with rule_1’s explanation. Please observe that rule_2 has no

12
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create rule rule_1 on emp

when updated(rank)

if select empid el from new updated emp.rank
where

(select rank from new updated
emp.rank where

new updated emp.rank > old up-
dated emp.rank

and new updated emp.rank < 5)

then update bonus

set raiseamnt = raiseamnt + 500
where empid = el.empid

Figure 1: Command to insert rule_1 into Starburst rule base.

condition since it is an EA rule. Also note that, in rule_3, the SQL query,

“select * ....” retrieves all fields from the specified table.

2.4 Execution Models

The final necessary ingredient of any active database management system
is its execution model [12]. For any ADBMS, its execution model describes
the manner in which rules are processed [12, 20, 22]. In general, this model
varies widely among different rule systems [20]. On the surface, this may seem
problematic for our proposed methodology of model checking ABDMSs. Yet,
recall that, even though Starburst implements its own language for defining
rules (its RDL), it still follows the generic ECA paradigm. Thus, it is possible
to isolate similarities among various execution models as long as they rest
on the ECA paradigm. We use Starburst as our illustratory case study of an
actual execution model.

2.4.1 Physical ADBMS Components

The most obvious resemblance among different execution models are the
physical components required for rule processing. Any ADBMS must have

13
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STATEMENT MEANING
create ... says rule_l effects emp table
when ... says this rule is signaled on an update of the rank field

new updated emp.rank

refers to the emp table after the update

old updated emp.rank

refers to the emp table before the update

if select ... instruction to find all the updated tuples
whose new rank is less than 5 and,
if the result is not empty, the condition holds
then ... says that if previous condition holds,

then update the bonus table

set ...where

says that an update adds 500 to the raiseamnt of
those tuples for which the previous condition holds

Table 8: Informal explanation of rule_1 definition.

create rule rule_2 on bonus
when updated(raiseamnt)
then update emp

set salary = salary + raiseamnt
where empid in (select empid from

new updated emp.rank, old updated emp.rank

where new updated emp.rank >
old updated emp.rank)

Figure 2: Command to insert rule_2 into Starburst rule base.

14
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create rule rule_3 on emp
when updated(salary)
if exists (select * from new updated emp.salary

where new updated emp.salary > old updated emp.salary and
new updated emp.salary > 50000 )

then

select * from new updated emp.salary where
new updated emp.salary > old updated emp.salary and
new updated emp.salary > 50000

Figure 3: Command to insert rule_3 into Starburst rule base.

[12] an underlying DBMS, a facility to define a set of rules, an event detector,
a condition evaluator, and an action processor. Only the organization of these
components varies over different rule systems.

2.4.2 Conflict Resolution

In addition to physical components, any ADBMS’s execution model requires
an explicit conflict resolution policy [12]. Since the occurrence of an event
may trigger multiple rules, this policy describes how an ADBMS chooses
which rule should be processed first [22]. There are three predominant strate-
gies for conflict resolution [22]: no ordering (i.e. non-deterministic selection),
partial ordering, and total ordering (i.e. deterministic selection). Partial and
total ordering can be enforced by assigning priorities to rules at the time
of rule creation. The full syntax for the creation of ECA rules in Starburst
allows such enforcements and is given by:

create rule name
when cvent

[ if condition ]

then action

[ precedes rule-list |
[ follows rule-list |

15
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create rule rule_1 on emp

when updated(rank)

if select empid el from new updated emp.rank
where

(select rank from new updated
emp.rank where

new updated emp.rank > old up-
dated emp.rank

and new updated emp.rank < 5)

then update bonus

set raiseamnt = raiseamnt + 500
where empid = el.empid

precedes {rule_2}
follows {rule_3}

Figure 4: Command to insert rule_1 with priority info into a Starburst rule base.

The optional syntactic categories precedes rule-list and follows rule-list
can be used to reflect one rule’s priority over another.

Example 6 Recall our insertion of rule_1 from Figure 1. Suppose, instead,
that we had inserted what is now shown in Figure 4. For the sake of discus-
sion, assume that some set of events triggered r1, ro, and r3 at the same time.
Before Starburst begins evaluating any rule, it must resolve this conflict by
choosing one of the rules in a fashion consistent with its conflict resolution
policy. Then r3 would be evaluated first, for all priority information is spec-
ified in 7’s definition (ro and r3 remain as they appear in Figures 2 and 3).
Thus, r; precedes (i.e. has priority over) r5, but not r3. Hence, r3 is selected
and evaluated first. We should stress that conflict resolution precedes rule
condition evaluation.

As mentioned throughout this subsection, we wish to identify the similar-

ities between different rule systems. Although different rule systems enforce

16
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empid name salary | rank
1 Matt Shirley | 50000 3
2 Jasmine Reick | 65000 4
3 Darren King | 45000 2

Table 9: emp table containing three tuples.

different policies for resolving conflicts, we make note of the fact that such
policies can be classified to be either unordered, partially ordered, or totally
ordered.

2.4.3 Execution Semantics of Starburst

We have almost completed the construction of our concrete ADBMS. So far,
we have created a small database containing employee information, designed
three ECA rules, translated those rules into Starburst syntax, and deter-
mined Starburst’s policy of resolving conflicts. The only thing we have not
yet defined is Starburst’s ezecution semantics, which describes how all these
components interact in order to process information [20]. Unlike the previous
issues we have discussed, the execution semantics of a particular ADBMS is
unique. This is what creates the real challenge inherent in analyzing rule
systems [20]. In Section 3, we tackle the issue of providing a generic frame-
work modeling each ADBMS’s unique execution semantics. Because of the
uniqueness of each ADBMS’s execution semantics, we rely on our running
example for presenting a simulation of Starburst’s execution semantics. We
begin with an initial transaction which triggers rules in our rule base. We
continue to follow the sequence of events that occur subsequent to this initial
transaction, pausing to discuss each step along the way.

Example 7 The next few pages provide a detailed example of the execu-
tional semantics of Starburst.

We assume that some tuples already exist in our two database tables as
shown in Tables 9 and 10. Also, we make this example more interesting
by adding one more rule 7, to our rule base. The resulting set of rules is
summarized in Table 11. Notice that r; and r4 are signaled by the same
event, but r4 has a higher priority as specified in the precedes clause.

Now, suppose Matt and Jasmine receive promotions and need to have
their ranks in their company increased by one. We could perform this update

17
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empid | raiseamnt
1 1000
2 1500
3 500

Table 10: bonus table containing three tuples.

Rule | ECA definition
T ON update to emp(rank)
IF new emp(rank) < 5
THEN update bonus(raiseamnt)
9 ON update to bonus(raiseamnt)
IF TRUE
THEN update emp(salary)
r3 ON update to emp(salary)
IF emp(salary) > $50000
THEN retrieve emp(empid,name,salary,rank)
T4 ON update to emp(rank)

IF TRUE
THEN retrieve emp(empid,name,salary,rank)
PRECEDES {r;}

Table 11: Rule Set used for example 7.

18
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using the following SQL command:

update emp

set rank = rank + 1
where empid = 1 or empid = 2.

This update on emp(rank) produces an event triggering rules r; and
ry. Starburst adds these rules to the consideration set R, which initially
is empty. Thus, R. = {ry,rs}. At any point during rule processing, the
consideration set contains all rules that have been triggered, but have not
yet been evaluated [1]. If R, is not empty the ADBMS “knows” that there
are some rules it must process (i.e. evaluate the condition of the chosen rule
and, if true, perform its action). Moreover, if R, contains multiple elements,
the ADBMS applies its conflict resolution policy for choosing a rule from R..

At this point, Starburst selects r, for consideration and removes it from
R.. Consideration is simply Starburst’s process of choosing a rule from
R., evaluating its condition and, if true, executing its action [1]. Since r4’s
condition holds vacuously, the system proceeds to execute the action, which
was defined as a data retrieval transaction to display the current values of the
tuples being updated. This action does not trigger any new rules. Table 12
summarizes what has occurred up to this point. Although new rules were
not triggered, note that R. still contains ry. Starburst realizes R, is not
empty and that it contains a sole rule. Thus, 7 is chosen for consideration;
its condition also evaluates to TRUE, but for Matt only! To see this, refer
back to Figure 1. The condition read as follows:

(select rank from new updated emp.rank where
new updated emp.rank > old updated emp.rank
and new updated emp.rank < 5)

where old updated emp.rank contains our initial values (Table 9) but new
updated emp.rank contains what is shown in table 13. The implications of
r’s action are to increase Matt’s raiseamnt (in the bonus table) by $500, but
leave Jasmine’s raiseamnt unchanged (since her rank equals 5). Furthermore,
execution of this action triggers the rule r, (see Table 14).

Starburst proceeds to automatically process newly triggered rules in the
same fashion. In this manner r, causes Matt’s and Jasmine’s salaries in the
emp table to be increased by $1,500, and also triggers 73 which displays
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transaction | event | triggers Re considered rule | condition | action
initial update | {r1,r4} | {r1,74} 7y TRUE | retrieve
r4’s action | N/A N/A {r} N/A N/A N/A

Table 12: Summary of events following initial transaction and r4’s action.

empid name salary | rank
1 Matt Shirley | 50000 4
2 Jasmine Reick | 65000 5
3 Darren King | 45000 2

Table 13: new updated emp.rank table.

transaction | event | triggers R considered rule | condition | action
initial update | {r1,r4} | {r1,74} 7y TRUE | retrieve
r4’s action | N/A N/A {r} N/A N/A N/A
N/A N/A N/A {r1} 1 TRUE | update
r1’s action | update | {ro} {ra} N/A N/A N/A

Table 14: Summary of events following initial transaction and r1’s consideration.
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transaction | event | triggers R considered rule | condition | action
initial update | {r1,r4} | {r1,74} 7y TRUE | retrieve
r4’s action | N/A N/A {r} N/A N/A N/A

N/A N/A N/A {r} T TRUE | update
r1’s action | update | {ra} {ra} 9 TRUE | update
ro’s action | update | {rs} {rs} T3 TRUE | retrieve
r3’s action N/A N/A {} N/A N/A N/A

Table 15: Complete summary of events following initial transaction.

empid name salary | rank
1 Matt Shirley | 51500 4
2 Jasmine Reick | 66500 5
3 Darren King | 45000 2

Table 16: emp after completion of rule processing.

the composite result of our initial update to the terminal. Thus, Matt’s and
Jasmine’s employee information will be displayed since their salaries are more
than $50,000. Thereafter, since R, contains no more rules, rule processing
terminates. Table 15 summarizes this entire process from start to finish. The
resulting values of the emp table are shown in Tables 16 and 17.

2.5 Previous Efforts to analyze ADBMS Behavior

Having a clear description of this ADBMS and its operation, we can now
address the issues of modeling and Model Checking rule systems. Before
we do that, we briefly discuss previous efforts at analyzing rule systems and
assess the results that were obtained.

Previous efforts at predicting rule system behavior have been addressed
in [1, 8, 21, 22]. These efforts were directed specifically towards Starburst,
but according to [1] can be modified and applied to any rule system. In [3], a

empid | raiseamnt
1 1500

2 1500

3 500

Table 17: bonus table after completion of rule processing.
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more general relational and algebraic approach was used. The benefit of such
an approach is that it is not specific to Starburst; its major disadvantage,
however, is that it can only be applied to rule systems built over DBMSs
using the relational model. In [3] one finds algorithms for analyzing the
following three properties: termination of a set of rules, confluence of a set
of rules, and observably deterministic behavior of a set of rules.

Termination is a property which ensures that rule processing is guaranteed
to terminate. In particular, one would like to ensure that rule execution does
not continue in a cyclic manner [1] as noted in Example 5.

A set of triggered rules is confluent if, the order in which rules under
consideration are being processed is immaterial to the final outcome [1].
Assigning priorities to rules is the easiest means of achieving a confluent
set of rules.

A set of triggered rules is observably deterministic if, regardless of the
order in which non-prioritized rules are processed, any final observable out-
come (caused, for instance, by a rule that displays information to the user’s
terminal) will be the same [1].

It is hardly surprising that attempts to analyze these properties have
been somewhat inconclusive. In [1, 8, 12], it is suggested that it would not
be possible to construct an algorithm which can prove, in general, whether
or not these properties hold for a set of rules. In fact, these notions are
in general undecidable. Therefore, our best hope is to provide sufficient
conditions under which our model checking methodology which successfully
verify the properties above. If such model checks fail, we can only infer
that the given ADBMS may or may not enjoy the respective property. Sur-
prisingly, no previous efforts seem to have been directed towards analyzing
more specific properties of rule sets; for instance, checking if certain rule in-
tegrity constraints, specified in the pre-developmental design specification of
an ADBMS, hold.

Example 8 Reconsider our set of rules from previous examples. Our pri-
mary goal was to design these rules to reflect our corporation’s policy of
giving raises whenever an employee is promoted in rank. Thus, we certainly
expect that our rules behave in a way such that an increase in an employee’s
rank always results in an increase to that employee’s salary. We usually take
for granted that such properties holds. However, human error and unpre-
dictable rule interaction can foil even the most meticulous design specifica-
tion. In fact, it turns out that this property is not satisfied in our simple
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rule set! Such subtle errors can occur quite frequently in rule design. Thus,
the problems inherent in designing a set of unambiguous rules are reminis-
cent to problems occurring in the design and implementation of concurrent
hardware and software. This makes model checking a natural candidate for
a methodology of analyzing ADBMSs [16].

3 Owur Model of an ADBMS

Model Checking ADBSMs means that our analysis of ADBMSs won’t be
applied to actual ADBMSs, but to an abstract model of such systems. Ab-
straction simplifies our verification efforts by allowing us to omit details of a
real ADBMS that do not effect the analysis of rule behavior [7]. In Subsec-
tion 1.3 we pointed out that it is beneficial to view an ADBMS as an open
system, since decisions made by the environment, in which the ADBMS op-
erates, could affect its behavior. Although we have not yet given any explicit
examples of such decisions, Section 2 suggests what some of these might be.
The Example 9 below depicts a situation where decisions made by Starburst’s
environment affect its behavior.

Example 9 Consider Example 7. The initial update triggered two rules r,
and r4. Rule r4 was selected for consideration first, since it had a higher pri-
ority. This scheduling decision made by Starburst’s environment and based
on its conflict resolution policy. An ADBMS operating under a different en-
vironment, e.g. one which enforced a different conflict resolution policy (see
Subsection 2.4.2), would, in general, behave differently.

In this section, we present our model of an ADBMS. A motivating factor
behind the design of this model is its ability to represent an ADBMS in
the context of different environments. Thus, although we apply our efforts
toward modeling the Starburst rule system, it should become clear that any
rule system could be modeled under this framework. We begin with a formal
definition of the model and proceed by examining each piece in greater detail.

3.1 The Model

Definition 10 Formally, a model of ADBMS rule processing is a tuple,

M:(Ra Ca Sa i)a E)a E)a L]a LQ)
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consisting of:

e a set of rules R = Ry + Rgy, where Ry is a set of ECA rules, and R is
a set of EA rules.

e a set of environment (controller) states C,

e a set of system states S,

e for each r € R, a binary relation, = C C x S
e two binary relations —5 and = ,onS x C, and

e two labeling functions L; : Atoms — P(C) and Ly : Atoms — P(S)
which map each propositional atom to the set of environment, respec-
tively system states where that proposition is true.

In addition, we demand that for each ¢ € C, each s € §, and each r € Ry, if
¢ 5 s, then s has exactly one tt and one ff successor. Furthermore, we
demand that for each ¢ € C, each s € S, and each r € Ry, if ¢ > s, then s
has exactly one tt successor and no ff successor.

Figure 5 shows our model of Example 7. Note that the names inside nodes
are state names and not propositional atoms true at such states. The latter
will be addressed in a later section. The initial state, ¢y, reflects the state
of Starburst immediately after the initial update to Matt’s and Jasmine’s
salaries. The collection of paths, beginning at ¢, reflect all the computations
that could possibly occur during rule processing. The execution path that
Starburst actually selected in Example 7 is denoted by dashed lines. Also
note that sy and sy only have a tt successor since ry and r4 are EA rules.
This model satisfies the requirement given in Definition 10. We refer back to
this model throughout the remainder of this section. The reader familiar with
ordinary models for CTL will recognize that our models are based on CTL
models which strictly alternate between system and environment capacities.

As customary, the states of the model reflect possible states of the ADBMS
we are modeling. For instance, an ADBMS may be in a state of computing
what rules have been triggered by an event, or it may be in a state of eval-
uating some rule’s condition. Our binary relations describe the ADBMS’s
capacity to move from one state to the next; e.g. such a transition could
result when an ADBMS executes a rule’s action. Finally, the labeling func-
tions (omitted in our example) determine what atomic propositions are true
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Figure 5: A model of Example 7 showing all the possible
behavior of our ADBMS.
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state | event | table | field(s) R priority

C
¢o | update | emp | rank | {ry,r4} | r4 precedes 1

Table 18: Configuration of the environment in state cg.

at each state. This allows one to represent states as bit vectors using e.g.
the description language of SMV [15]. The logic EATL associated with such
models is presented in Section 4.

Our notion of model allows us to distinguish between those decisions that
depend on the particular ADBMS we are modeling (i.e. its environment), and
those which do not (i.e. its underlying system).

3.2 The Interaction between Environment and System

Section 2 provided us with a general idea of how interaction occurs between
an ADBMS’s environment and its system. For instance, at any point fol-
lowing the initial event and preceding the termination of processing, the next
transition of the ADBMS is determined as follows:

e If the ADBMS is in some state ¢; € C' and R, is not empty at ¢;,
then the ADBMS’s enwvironment must choose a rule r; for considera-
tion based on ¢;’s current configuration. The ADBMS then makes a
transition to some system state s; € S.

o If the ADBMS is in some state s; € S then the system chooses whether
it executes r;’s action or not (recall that r; was chosen above in state ¢;).
This choice depends on how the system evaluates r;’s condition. If r; is
an EA rule this choice is deterministic and the system always executes
its action. Regardless of what the system chooses, the ADBMS then
makes a transition to some environment state c;4; € C.

Example 11 Consider Example 7. Initially, we executed an update on
Matt’s and Jasmine’s ranks in the emp table. In terms of our model, we
can imagine Starburst making a transition into environment state ¢, when
the initial event occurs. At this point, Starburst’s environment must decide
which rules are triggered by an update to emp(rank), which rules should be
added to R., and which rule should be selected for consideration.
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state | action | table field(s)
sop | retrieve | emp | empid,name,salary,rank

Table 19: Configuration of the system in state sq.

state | event | table field(s) R priority
co update | emp rank {r1,ra} | 74 precedes
1 retrieve | emp | empid,name,salary,rank | {r} N/A

Table 20: Configuration of the environment in state c;.

Table 18 shows the configuration of Starburst’s environment in state c.
Based on ¢y’s configuration, the environment determines that R, is not empty
and chooses 14 for consideration (since r4 precedes r1). Upon consideration
of ry, Starburst makes a transition into system state sy (see Figure 5). The
system must now determine if r4’s condition is TRUE, and if so, what action
should be executed.

Table 19 shows the configuration of Starburst’s system in state sy. Be-
cause r4 is an EA rule, the only possible transition out of sy is a tt transition.
Thus, the system performs a retrieve on the emp table. Starburst makes a
transition into state ¢; and control reverts back to its environment. Table 20
shows the configuration of Starburst’s environment in state ¢;. Notice that
although sy’s action did not trigger any new rules, the environment still has
knowledge of its configuration prior to entering ¢; (i.e. ¢y’s configuration).
This concurs with what would occur in the actual ADBMS.

In state c¢q, the environment has to select r; for consideration, and the
ADBMS enters system state s;. At this point, the system needs to determine
whether r;’s condition is TRUE, and if so, what action should be executed.
We chose to omit any representation of the database state in our model. This
omission is the basis for an abstract interpretation of the actual ABDMS and
makes it possible to model rule processing in a finite number of states. In our
example this means that the system has absolutely no information about the
concrete values in tables emp and bonus. So how can the system determine
if it should execute r;’s action? We address this critical problem of modeling
rule condition evaluation in Subsection 3.4. For now, we pretend that the
system can obtain information from Starburst’s database and evaluate each
rule’s condition according to Example 7. Then, since r{’s condition was
TRUE, the system executes an update on bonus(raiseamnt).
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state | event table field(s) Re priority
co update | emp rank {r1,74} | T4 precedes 1
1 retrieve | emp | empid,name,salary,rank {r} N/A
c2 | update | bonus raiseamnt {ra} N/A
c3 | update | emp salary {r3} N/A
cy | retrieve | emp | empid,name,salary,rank {} N/A

Table 21: Configurations of all environment states reached during rule processing,.

state | action | table field(s)
S0 retrieve | emp | empid,name,salary,rank
S1 update | bonus raiseamnt
S92 update | emp salary

S3 retrieve | emp | empid,name,salary,rank

Table 22: Configurations of all system states reached during rule processing.

The interaction between the environment making decisions and the sys-
tem reacting to those decisions continues until Starburst hopefully reaches a
state where rule processing terminates (i.e. R, becomes empty). Tables 21
and 22 summarize this entire interactive process.

A salient feature of this interaction is that it strictly alternates between
choices made by Starburst’s environment and its system. In [2], Alur and
others suggest that this alternation can be thought of as a “game” of envi-
ronment versus system, where each “agent” makes a move on its respective
turn. Indeed, when Starburst’s environment chooses a rule for consideration,
it is up to the system to determine if that rule’s action should be executed.
Analyzing all the possible outcomes of this game helps us determine if the
environment and system could interact in a manner inconsistent with the
designer’s intentions [2].

3.3 The States of our Model

In general, an ADBMS begins processing ECA rules in response to some
triggering event which is initiated by the user. From that point, up to the
point where rule processing terminates, either the ADBMS’s environment or
its underlying system determine how rule processing is to proceed. Thus, at
any time during rule processing, an ADBMS is either in some environment
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state, ¢ € C, or some system state, s € §. Initially, the ADBMS is in
environment state cg.

From Subsection 2.4, we know that the manner in which ECA rules are
processed under Starburst is, in part, determined by its execution model.
Furthermore, we discovered that different ADBMSs often have different ex-
ecution models. Therefore, we can conclude that it is the execution model
which defines how a particular ADBMS behaves. The next example illustrates
how Starburst’s execution model defines its environment.

Example 12 Recall Examples 7 and 11. Our initial command updated
Matt’s and Jasmine’s salaries. In terms of Figure 5, we can imagine Starburst
entering state ¢yg. At this point, Starburst’s environment determined that rq
and r4 should be triggered, r; and r, should be added to R., and r4 should
be considered before r;.

All of these decisions reflect some aspect of Starburst’s execution model.
For instance, 1) reflects the event types which Starburst’s event detector
recognizes; 2) reflects Starburst’s execution semantics; and 3) reflects Star-
burst’s conflict resolution policy. Hence, during rule processing, we define an
ADBMS to be in an environment state, ¢ € C, whenever it is computing the
rules that are triggered by an event, the set of rules eligible for evaluation
and possible execution (i.e. R.), and the rule to be selected for consideration.
Similarly, we define an ADBMS to be in a system state, s € S, whenever a
rule is already under consideration, and an action is ready for execution.

Of course, the ability to compute these results presumes that each state
in our model is enriched with information about rules in the ADBMS’s rule
base. Section 5 gives some examples of how we might encode this informa-
tion into states. For now, we assume that, at each state, the ADBMS may
obtain any rule information necessary to perform its computations. Clearly,
whenever the system must evaluate a considered ECA rule, it considers two
possibilities: executing the rule and not executing the rule. Later on we will
see that our verification framework accounts for that by doing a conservative
flow analysis.

3.4 The Transition Relations of our Model

Subsection 3.2 informally described the interaction between an ADBMS’s
environment and its underlying system. In this subsection we wish to for-
malize and generalize these notions. The binary relation — is defined for
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each 7 € R. We write ¢ = s to express that it is possible for the ADBMS
to reach state s from state ¢ by considering rule r;. The following example
illustrates such state transitions.

Example 13 Consider the first transition, ¢y to sg, described in Example 11
and illustrated in Figure 5. The transition was made upon the environment
choosing 7, for consideration at ¢;. Formally, we would express this transition
in our model as: ¢y = s.

Example 11 is somewhat unrealistic because at every state, ¢; € C, only
one rule is eligible for consideration. This does not allow us to demonstrate
the true power of our model. Our next example presents a more complicated
situation.

Example 14 Consider Example 11 again, but this time, let’s assume that r,
and r, have the same priority. Then, at state ¢y, the environment must non-
determanistically select which rule should be considered first. Hence, there
are two possible transitions out of state ¢y: ¢y — so and ¢y — sq. Figure 6
shows how we would represent this graphically. The model is quite large and
demonstrates how non-determinism can drastically increase the state space.
We should point out, however, that, as in Figure 5, the paths in this model
all terminate eventually.

The power to express this non-deterministic choice in our model is essen-
tial to realizing reliable results during verification. We may also apply non-
determinism in order to abstract certain details of the actual system [10]. Tt is
this application of non-determinism that allows us to simulate the evaluation
of an ECA rule’s condition at system states; a topic which was previously
ignored in Subsection 3.2.

The two binary relations, —5 and = , allow us to effectively abstract all
details about the ADBMS’s database. We know from Section 3.2 that when
our ADBMS is in some state s € S, the system may choose either to execute
or not execute an ECA rule’s action. Therefore, we write s =5 ¢ to express
that it is possible for an ADBMS to reach state ¢ from state s by executing
rule r;’s action. We write s 25 ¢ to express that it is possible for an ADBMS
to reach state ¢ from state s when r;’s action is not ezecuted (i.e. if r; is an

ECA rule).

Example 15 Consider again the transition from s; to co given in Example 11
and illustrated in Figure 5, but this time suppose we do not know that r;’s
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state | event table field(s) Re priority
co update | emp rank {r1,74} | T4 precedes 1
1 retrieve | emp | empid,name,salary,rank {r} N/A
c2 | update | bonus raiseamnt {ra} N/A
ch N/A N/A N/A {} N/A
c3 | update | emp salary {r3} N/A
cy | retrieve | emp | empid,name,salary,rank {} N/A
c N/A N/A N/A {} N/A

Table 23: Configurations of all the environment states for Figure 5.

condition must evaluate to true. Then there are two transitions out of state
s1t 81 =5 ¢y and s R ¢5. On the other hand, for any EA rule » € Ry
under consideration at state s € S, we have exactly one tt successor and no
ff successor. For example, at state sq, the EA rule r, is under consideration.

Notice that in Figures 5 and 6 there are various paths along which rule
processing may proceed. Each of these alternatives represents a unique com-
putation path of the ADBMS. Formally, a computation path of M is a
sequence of states n = ¢, sg,c1, 51, ...,¢j,5j, ..., such that ¢; LN s, and

tt f£f
(Sj — Cj41 OT S — Cj_|_1).

Example 16 Consider Examples 14 and 15. One possible computation path
is 1 = co, S0, €1, 51, Co - . . . Another, different possibility is ' = co, s¢, ¢1, 51, €.

In order to understand a model in its entirety, it is useful to account
for information computed and stored at each state. Table 23 shows the
configuration of each environment state depicted in Figure 5. Technically,
this information could be provided by labeling states with appropriate atomic
propositions. Notice that at any environment state where R, is empty (such
as ¢4), there are no edges out of that state’s node. This indicates that rule
processing terminates in such states. The configuration of the system states
is the same as in Table 22.
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same as Figure 5

Figure 6: A complete model of example 14.

3.5 Labeling Models with Propositions

As rule processing proceeds in a rule system, we expect certain atomic propo-
sitions to be true when the ADBMS is in a certain state. For instance, in
Figure 5, it may be useful to know that state ¢y “is triggered by an update
action”, or state s, “can execute a retrieve action”. We can apply these
atomic propositions towards constructing formulas which specify properties
we desire to hold in our rule system. Indeed, the primary objective of Model
Checking is to verify automatically that what we desire to be true about a
model actually be true.

In our model, we view an ADBMS as a cooperative of environment and
system. Thus, we expect certain propositions to hold at each environment
state, and certain, different propositions to hold for the system. This view
is facilitated by the existence of two labeling functions in our model: L,
and Ly. It is not problematic that atoms for both the environment and
system come from the same set, since our labeling functions effectively handle
such a distinction. In fact, we could check if the proposition “can execute a
retrieve action” is TRUE at some environment state, but such a check always
returns a FALSE answer. Such consistencies will be implicitly guaranteed by
a program which describes the model (e.g. a program written in SMV or
Spin).
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4 Event-Action Temporal Logic

Certainly, as ADBMS designers, we would write a formal specification defin-
ing the requirements we expect our rule system to meet. Example 8, for
instance, suggests a rule behavior constraint we want to enforce in our rule
system. This constraint specified that, if an employee’s rank is updated, their
salary should ultimately be updated automatically. Thus, our specification
should require that, no matter how rules are processed, this constraint holds.
Model Checking, or any other formal verification method, should then ensure
our rule system’s correctness with respect to this specification [11, 17]. Since
we wish to reason about ADBMS rule processing, we offer a specification
language that reflects the interaction that occurs as a result of the sequence
of decisions, made in an alternating fashion, by the ADBMS’s environment
and its system. We present the syntax and semantics of Event-Action Tem-
poral Logic (EATL), a branching-time temporal logic based on CTL (which
models closed systems) [2]. We can use EATL to describe the behavior we
expect an ADBMS to exhibit during rule processing. As before, we apply
EATL towards checking properties pertaining to our Starburst rule system
(and gain some surprising insights!).

4.1 Syntax of EATL

In Section 3, we modeled rule processing as a series of decisions, made in
an alternating fashion, between the environment and system of an ADBMS.
More precisely, U,cr — captures all possible decisions made by the ADBMS’s
environment which take the ADBMS from an environment state to a system
state. Likewise, By represents all possible actions taken by the ADBMS’s
underlying system which move the ADBMS back to an environment state.
For this reason, the logic EATL (an action-based, alternating CTL) is com-
prised of two distinct but interdependent sub-logics: EATLs and EATLg.
Their interdependence allows us reason about the interaction between envi-
ronment and system.

Definition 17 Given a set of propositional atoms Atoms, two sets of propo-
sitional variables, Var; and Var,, a set of ECA rules R = Rq{ + Rs, we let K
range over subsets of R and define EATL¢ formulas ¢ and EATLg formulas

¢ as:
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G o= x|t p | | A | [K]6 | (K)6 | pmy
b v= y| B [ p| 6|6 Ads | (66)0 | (FE)0 | o

where x € Var; and y € Var,.

As usual, we may derive the logical operators V and = for both EATL¢
and EATLg. Moreover, we define vz.i) by —pz.—[—-z/z] and vz.¢ by
—px.—¢|-x /x|, where [—x/x] is the substitution of —x for free occurrences of
x in its argument. The meanings of the modalities (K) and [K| are based on
the standard semantics for the modal mu-calculus; we use (—) as a shorthand
for expressing (R) as in [5].

Example 18 Let us reconsider the model in Figure 6. Suppose the EATL¢
formula ¢) = [—]¢ is true at environment state co. Then this formula states
that for all possible transitions out of ¢y, which take place following the
consideration of a rule in R, (co = so and ¢y —% s in this case), the EATLg
formula ¢ is true at all the next system states (so and s;). Suppose, instead,
the formula ¢ = [Ry]¢ were true at state ¢g. Then this formula states that
for all possible transitions out of ¢y, which take place following consideration
of an EA rule in Ry (¢ =% s)), the EATLg formula 1 is true at all the
next system states (at s;). The EATL¢ formula v = (—)¢ has a similar
meaning, but is less restrictive. The formula ) = (—)¢ is true at state c¢q if
consideration of at least one rule in R, causes the ADBMS to enter a system
state where ¢ is true (so or sp).

Example 18 shows how the modalities of EATL¢ can be used to express
the usual branching-time temporal properties of CTL imposed on an envi-
ronment state. In a similar fashion, the modal operators defined for EATLg
are used to express properties that, depending on how a Starburst system
evaluates a rule’s condition, should hold at the subsequent environment state.

Example 19 Consider again the model in Figure 6 and suppose the EATLg
formula ¢ = (tt)y is true at state sy Then, this formula states that, if
Starburst’s system executes r;’s action, v is true at state ¢;. Similarly, if the
formula ¢ = (££)1) were true at state sq, then ¢ would be true at state c}.

Of course, one can now write specifications which hide intermediate sys-
tem or environment states. We will return to this point later.
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4.2 Semantics of EATL

The semantics of EATL formulas over our notion of models is the obvious
adaptation of the standard semantics for the corresponding fragment of the
modal mu-calculus [5].

Definition 20 Given a model M = (R, C, S, &, =%, =Ly, Ly) of
ADBMS rule processing, a valuation p =< py, p; >:< Var; — 2¢ Var, —
25 > and some ¢y € EATL., we denote the set of states where v is true
with respect to p by [¢]5. We define [¢]5 inductively as follows:

L[] = pi(2)

2. [pl; ={ce€C|ce Li(p)}, for each p € Atoms

3. [££]5 ={}

4. [-]; = C = [v];

5. [t Aoy, = [n ]}, 0 [l

6. [[K]p]s ={ceC|VseS VreK e s implies s € [¢]°}

7. (K)¢]; ={ceC|IseS,Ire K .c— sands € [¢]5}

8.[[ vl = N{ACC | [¥]5,.4 € A}, where p[z — A] is the valuation

Wthh agrees with p on all y except that p'(z) = A.

For any ¢ € EATLg, we denote the set of states where ¢ is true with
respect to p by [¢]?. We define [¢]? inductively as follows:

L [z]}, = pa(x)

2. [p]; ={s€C|se€ Lyp)}, for each p € Atoms

3. [££ ], = {}

4. [=¢]; = S =9,

5. [o1 A o]y =[] N @]}

6. [(tt)Y]; ={s€S|Fc€C s cand c €[]}
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7. [(f5)Y]; ={s €S |VeelC s = ¢ implies ¢ € ]}

p

8. [ux.9]; = N{A C S[[o]},., 4 € A}, where plz — AJ is the valuation
p' which agrees with p at all y except that p'(z) = A.

Theorem 1 The semantics of EATL is well-defined since all operators have
a monotone meaning except —, which is anti-tone.

The proof of this in a mere adaptation of the corresponding fact for the

modal mu-calculus. It should be clear that this semantics gives rise to a
generalization of the model checking algorithms which are based on labeling
states with subformulas of a given specification [15].
Convention 21 Given a model M = (R, C, S, &, =%, = L, Ly) of
ADBMS rule processing, a valuation p, and an EATLs or EATLg formula,
we define M, ¢ =, ¢ (read “c satisfies ¢ in M w.r.t. p”) by ¢ € [¢]; and
M, s =, ¢ (read “s satisfies ¢ in M w.r.t. p”) by s € [4];.

In the next example, we demonstrate the usefulness of EATL by checking
a few simple properties for the model depicted in Figure 5.

Example 22 Refer back to Tables 21 and 22 which show the configurations
of the states for the model in Figure 5. We can use this information to define
a number of atomic propositions. Suppose Atoms includes the following four
atomic propositions:

e p;=is triggered by an update event,
e po=is triggered by a retrieve event,
e p;=can execute an update action, and
e py,—can execute a retrieve action.

Of course, Tables 21 and 22 provides much more information, and each atomic
description is a suitable candidate for an additional atomic proposition. Some
of the checks we can make are listed below.

e ¢y = p; holds since, according to Table 21, ¢ isin L; (is triggered

by an update event).
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e sy E p4 holds since, according to Table 22, sq is in Ly (can execute
a retrieve action).

e ¢y |= p1 A[ralps holds since ¢y = p1, 5o = pa, and since ¢y 3 s is
the only possible r4 transition out of ¢q.

e sg | p4 A (tt)—ps holds since sy |= p4, ¢1 [~ po, and there is a
transition sq = ¢;.

4.3 Branching-Time Operations in EATL

In Subsection 1.3, we mentioned that one limitation of using Computation
Tree Logic (CTL) for analyzing ADBMS rule processing was its natural re-
striction to closed systems [2]. Nevertheless, the ability to write branching-
time properties gives CTL much expressive power [10] which can be put
to actual use since several software tools for model checking CTL, such as
the Symbolic Model Verifier (SMV) [15], have been developed. SMV is a
Model Checking tool which uses efficient data structures and algorithms [6]
for checking CTL formulas over models of finite-state systems [10, 15] and a
description language for models and specifications [10] . Alas, we will shortly
see why SMV cannot be practically applied towards modeling ADBMS rule
processing.

4.3.1 Expressing Branching-Time Properties

We examine in detail only the branching-time operations for EATLcwhich
are suitable abstractions of those for CTL. We adopt a CTL-like notation:

e ¢y = AG iff for all computation paths n = co, sg, ¢1, s1,... we have
¢; E 1 for all ¢; along that path.

e ¢y = EG ¢ iff there exists a computation path n = cg, sg, 1, 51, ..
such that we have ¢; | ¢ for all ¢; along that path

e ¢y E AF°¢ iff for all computation paths n = ¢y, sg, ¢1, S1, ... we have
¢; | 1 for some ¢; along that path.

e ¢y = EF“¢ iff there exists a computation path n = cg, s¢, ¢1, S1, - - -
such that ¢; |= v for some ¢; along that path.
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e ¢y E A%(¢y U 1)y) iff for all computation paths n = ¢g, So, ¢1, S1,... we
have ¢; |= 1, for some ¢; along that path, and for each j < i, ¢; = .

e ¢y = E(¢1 Uby) iff there exists a computation path n = ¢q, sg, ¢1, S1, - - -
such that ¢; | 1y for some ¢; along that path, and for each j < i,

Cj = 1.

4.3.2 Expressing AG“and EG*

In [7], it is shown that EG1 in CTL can be characterized as the greatest
fixed point of the equation: EG vy = vx.p A (—=)x. This results in a labeling
algorithm computing the set of states which satisfy EG [15]: 1) Assume
that each state satisfying ¢ has been assigned the label ¢; 2) Assign all states
which are labeled with ¢ the label EG v; 3) Repeat until no change: Remove
the label EG ¢ from a state if it has no successors labeled EG 1.

We can express EG®¢ in EATL¢ in the same fashion. The only interest-
ing question is what are suitable notions of nezt states in our model. Since an
ADBMS alternates between environment and system states, the next state
of some environment state ¢ is actually a system state s. However, from
the environments point of view this system state s will determine the next
environment state ¢’. Our adapted CTL operators think of the sequence
¢ — s — ¢ as a single transition ¢ — ¢ by hiding the interaction with the
system. This opens up several interpretations of hiding. We chose the most
sensible, conservative one, which treats the hidden activity as demonic non-
determinism (if some interaction with the system causes the specification to
fail, then our model check will fail).

Demonic non-determinism is only one possible and extreme interpretation
of “possible next environment states”. Complete abstraction of data of the
underlying DBMS is the corresponding extreme on the date side. Obviously,
there is a range of abstract interpretations of these notion and their actual
choice would depend on the concrete ADBMS and the abstract interpreta-
tions performed on data in the underlying DBMS. One could begin testing
with this extreme case and if verification fails one would make the interpre-
tations more concrete until the verification succeeds or an actual design flaw
has been found.

Example 23 Recall that EG® ) requires v to hold at every state on at least
one computation path. Now suppose ¢ = EG“% holds. Then by definition
we require that ¢ holds at ¢ and EG® ¢ hold at one of its possible environment
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successors. Clearly, this requirement would be satisfied if for some system
state s, where ¢ — s for some 7 € R, the EATLg formula:

e ¢ = (tt)y holds at state s, if » € Ra, or

e ¢ = (tt)y V (£ff)1 holds at state s, if r € Ry.

Thus, using what we know about EG in CTL, we arrive at the following
equation:

EG Y = vey A(Ra)((tt) v (££)7) V (Re)((tt))].

We can iteratively compute this set in a fashion similar to EG¢ in CTL: 1)
Assume that each environment state ¢, satisfying 1, has been assigned the
label v; 2) Assign all environment states in C which satisfy ¢ the label EG® ¢;
3) Repeat until no change: Remove the label EG®4 from an environment
state if none of its system successors’ successors are labeled ).

For all practical purposes, this algorithm works just like the associated
algorithm for computing EG ¢ in CTL. However, since our model of rule
processing alternates between environment and system states, we must ref-
erence an environment state’s system state successor in order to examine
(and possibly remove) the label at the next environment state. Additionally,
the branching time mode at system states depends on whether it stems from
an EA or an ECA rule. It should now be apparent that the time complexity
of such algorithms will be quadratic in the number of environment states.

Next, we examine AG® v, which is similar to EG® ¢, except that it requires
1 to hold at every state along all possible computation paths. We express
this operation with the following equation:

AG ¢ = vagp A [[Ra]((58)2 A (£2)) A [Ra((£8)a)].

Notice how this equation is much more restrictive that EG® ), but similar
in structure; we only negated the notion of “there exists a next environment
state”. Figure 8 illustrates a model whose initial environment state satisfies
AG®. Certainly, this operation is quite important for checking properties
we demand to hold throughout rule processing.
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(tt)EG® ¢

(tt)EGC ¢ V (££)EGC ¢

£,
@‘EGC v

Figure 7: Model where ¢y |= EG®.
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(tt)AG®

——( 1+t )AG® Y A (£1)AG ¥
B

(tt)AG ¢

(tt)AG Y A (££)AGS ¢

1
c

@):-;«;c ¥

Figure 8: Model where ¢y = AG“ 1.

AGE ¢
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4.3.3 Expressing AF°and EF°

Whereas AG°and EG®are used to check “invariant” properties that hold
at every environment state along all or some paths, the branching-time op-
erators AF°and EF©are used to check properties that we don’t expect to
hold for all states along a computation path, but do expect to hold even-
tually; perhaps only after a certain situation arises. Unlike the previous
two branching-time operations, AF“and EF®are characterized as least fixed
points [15]. Again, AF°¢ expresses a more stringent property than EF .
Consider the following fixed point characterization of EF©:

EF ) = pry v [(Ra)(tt)z V (££)2) V (Ro)((tt)2)].

Like EF ¢ in CTL, the set of states satisfying EF“¢ can be determined
by the following algorithm [15]: 1) Assume that each environment state,
¢, satisfying ¢, has been assigned the label v; 2) For all states labeled v
in step 1, assign these states the label EF1); 3) Repeat until no change:
Assign (i.e. add) the label EF“4 to any environment state if at least one of
its system successors’ successors are labeled ).

This labeling activity is characterized as a least fixed point: we iterate
the labeling process beginning with no initial labels. The formula AF°1) is
shown in the following equation:

AF® Y = prap V[[Ra((tt)e A (££)7) A [Ro]((et)2)].

By modifying step 3 of the algorithm for computing EF¢ ), we can com-
pute the set of states satisfying AF“e. Step 3 would be changed so that
we add the label ¢ to an environment state only if all system successors’
successors are labeled ¥. Figures 9 and 10 illustrate models whose initial
environment states satisfy EF 1) and AF°1) respectively.

4.3.4 Expressing AU“and EU*

Often we need to express that some property v; should hold until rule pro-
cessing reaches a point where another property 1), is satisfied. The branching-
time operation E¢(¢; U 1)) specifies that, for at least one computation path,
11 holds at the current state, and continues to hold, until rule processing
reaches a state where 1, holds. We characterize this formula with the fol-
lowing equation:
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BEF® ¢

(tt)EF® o

EF° ¢
(tt)EF€ ¢ V (££)EF€ o

o,
<2

Figure 9: Model where ¢y |= EF¢q.

(tt)AF¢ ¢

AF€

Figure 10: Model where ¢ = AF.
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E° (1 U ¥2)
(t8) B (1 U 2)

c1
E€(¢1 U thg)——>

(t8)E (Y1 U ¢2) V EHE (Y1 U ¢2)

ES(¢1 U 92)

Figure 11: Model where ¢y = E°(¢1 U 19).

B (1 U thg) = par (2 V (Y1 A [(Ra) ((tt)2 V (££)2) V (Re)((t8))])).

Figure 11 shows a model whose initial environment state satisfies the
formula E¢(¢); U 1)y). As before, the characterization of A°(¢; U 1)) is very
similar to its sibling:

A U tha) = p.(ha V (1 A[[Ra]((88)2 A (££)2) A [Ro]((2))]).

Figure 12 shows a model whose initial environment state satisfies the
formula A°(¢); U 1)). Algorithms for computing the set of states satisfying
these formulas could be handled iteratively, in the same fashion as previous
branching-time operators. Table 24 and 25 summarizes the branching-time
operations for both EATLs and EATLg.

4.4 Practical Properties for our Starburst Model

We already pointed out that previous efforts at analyzing rule systems fo-
cused on determining whether properties such as termination, confluence and
observable determinism are satisfied by a rule set. It was shown that these
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A%(¥1 U 9¥2)

(8 )A“ (Y1 U 92)

A (Y1 U o)
(tt YA (Y1 U o) A (££)A (Y1 U ¢2)

Figure 12: Model where ¢y = A(¢1 U ).

EG Y =vzap N ]|

AG Y = vz A[[Ra]((tt)z A (£

EF¢e) = pzap V [(Ra)(tt)z V (ff
AF®4) = iV [[Ra]

E(¢1 U thg) = Miﬂ (12 V (1/)1 A

A(1p1 U aho) = px. (2 V (1 A

(R
R

Table 24: Branching time operators for EATL.

AG p=vx.0p A
EG ¢ =vz.dp A
AF* ¢ = pur.¢p v

R4z
Ri)z
Jz A
)&

[ A (££

( Vv (f )(Rl) )V
R4 (ff)[Ra]z) A (

EF* ¢ = pz.¢ V[(tt)(Ra)z V (££)(R1)z)

E* ($1U ¢2) = pr-(d2 V (1 A[((tt)(Ra)z V

A’ (AU ¢o) = Mm (¢2 V (1 AL((tt)[Ra]z A

[(tt)
[(tt)
[(tt)
[(

(ff)[R1]z

(tt)((R2)x)]))
(tt)([(Ra]x)]))

Table 25: Branching time operators for EATLg.
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properties could not be decided in the general case (i.e. without abstrac-
tions) [1, 8, 12]. In the next example, we demonstrate how we can specify
termination in EATL.

Example 24 Recall from Table 21 that, at each environment state, the con-
figuration at that state includes the current status of the set R.. Moreover,
we explained that whenever R, is empty at an environment state, it means
rule processing has terminated. Therefore, the EATL. formula

Yterm = AF¢(consideration set is empty)

specifies that rule processing is guaranteed to terminate, for it expresses that
“for all computation paths beginning in some environment state ¢ there is
some future environment state, where the consideration set is empty.”.

In our model from Figure 5 we have ¢y = tierm since all paths eventually
terminate.

As suggested in [1] the properties of confluence and observable determin-
ism are quite difficult to establish. In fact, analyzing these properties requires
a number of steps. In the next section, we examine a possible model check-
ing scheme for handling these properties. For now we focus on specifying
deterministic ordering of actions. The following example demonstrates how
we may apply EATLg to determine if it is possible for two different actions
to execute in different orders.

Example 25 Given atomic propositions

p1 = can execute update on emp(salary)

p2 = can execute a retrieve on emp(salary)
we consider the EATLg formula

$ord = 7(EF” (p1 AEF’ (p2)) A (EF® (p2 A EF? (p1))).

If there exists any state s € S such that s £ ¢oq our rule set may not
have deterministic ordering with respect to the actions specified by p; and
po. Otherwise, if s |= @orq then there cannot be two execution paths n; =
cey STy ey 8o, .. and my = ... 8, .., sh, ... where 57 | pp and sy = po,
and s§ = ps and s, [ p;. If there did exist two such execution paths,
then, depending on how rules are processed, we may either see 1) the value
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of emp(salary) before it is updated, or, 2) the value of emp(salary) after it
is updated. Certainly, the result of each computation path could be different.
However, it may also be the case that one of these executions is impossible or
unlikely to occur during rule processing. This determination must be made
interactively by the rule designer. In any case, the validity of s |= ¢
ensures deterministic ordering with respect to propositions p; and ps.

Example 25 also suggests an interesting aspect of EATL. Although we
chose to analyze deterministic ordering in the context of EATLg, the mutual
recursiveness of EATL allows us to express the same property written in
EATL.. The formula ¢ = [—]¢ could also be used to check for deterministic
orderings but at the level of the environment; in addition it provides more
flexibility. For instance, if we modify the formula above slightly, we could
write ¢» = [K]¢, where K C R, in order to check this property for a subset
of our rule set. This allows for more fine-grained and calculated analyzes.

Finally, we show how we might use EATL for checking certain rule be-
havior constraints we wish to enforce, such as the one given in Example 8.

Example 26 In Example 8, we stated that we were interested in showing
that our rules behave in a manner such that, whenever an employee’s rank
is updated, then that employee’s salary is also updated. Recall Figure 5,
which depicts a model of rule processing that begins with an update to two
employees’ ranks. Then the EATL. formula

leadsto(ry,r3) = AG® (rule 1 is selected for consideration
= AF“(rule 3 is selected for consideration))

mnemonically reads as “At any environment state, if rule 1 is selected for
consideration, then eventually rule r3 is chosen for consideration.”.

Unfortunately, the check ¢y = leadsto(ry,rs) fails in the model of Fig-
ure 5. As a counterexample consider the path ¢, sg, ¢1, $1, ¢. Notice that ry
is selected for consideration by Starburst’s environment in state ¢;. However,
processing may terminate in state ¢, without ever considering r3. Indeed, we
have uncovered a subtle error in our rule design. If we refer back to the orig-
inal rule definitions given in Section 2, we notice that an employee’s salary
only gets updated if their new rank is less than five or if their rank is up-
dated at the same time as another employee’s whose new rank is less than
five. Thus, in Example 7, Jasmine was lucky to have her rank updated at the
same time as Matt’s! In order to correct this problem, we need to modify our
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Rule | ECA definition

T ON update to emp(rank)

IF new emp(rank) < 5

THEN update bonus(raiseamnt)
PRECEDES {rs}

r3 ON update to emp(salary)

IF emp(salary) > $50000

THEN retrieve emp(empid,name,salary,rank)

T4 ON update to emp(rank)

IF TRUE

THEN retrieve emp(empid,name,salary,rank)
PRECEDES {T] s ’)"5}

s ON update to emp(rank)

IF TRUE

THEN update emp(salary)

Table 26: Corrected rule set used for our corporation’s rule system.

rule set. A correct set of rules is given in Table 26. Notice that ry has been
removed and replaced by r5. Now an employee’s salary is updated when-
ever their rank is updated. As with Figure 5, Figure 13 shows the model of
rule processing for this set of rules (again, the initial event is an update to
emp(rank)). Now, ¢, satisfies the rule behavior constraint given in Exam-
ple 26. Although we discovered and corrected this error without automatic
verification, it should be clear that, generally, this becomes impossible for
more realistic examples.

5 ADBMS Model Checking

So far we have outlined all the necessary components for a verification tool
capable of checking EATL formulas in our framework. However, growth
in the popularity of Model Checking over the past decade has already led
to the development of a number of formal verification tools. Thus, rather
than constructing a new model checker, it seems advisable to implement
our framework in an existing verification tool. For example, it should be
relatively straightforward to implement the verification of EATL formulas
in MOCHA [2] as soon as that tool has been built. Since SMV did not
perform well in our setting, we turned to Spin, a verification tool developed
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Figure 13: A complete model of our corrected rule set.

48

www.manharaa.com




at Bell Laboratories [4]. The reader familiar with Spin surely realizes that
its specification language LTL is a linear-time temporal logic and is therefore
not suited for implementing EATL. Luckily, a variety of key properties,
like termination and responsiveness, lie in the intersection of branching- and
linear-time logics. Thus, we can employ Spin for those properties.

Spin provides its own description language, Promela, which specifies ab-
stract models of systems. In this section, we show how the model of rule
processing described in Section 3 can be written in Promela and analyzed by
Spin. Specifically, we write a Promela specification for our running example
from Section 2. Then, we show how Spin can be applied towards analyzing
those properties of rule behavior important to ADBMS designers (see Sub-
section 2.5). In addition, we have developed a small, interactive environment
for automatically generating Promela models of rule processing for different
rule sets. This simple GUI application, written in Java, allows a user to
define a set of rules and verify properties such as termination, deterministic
ordering, and rule integrity constraints. Moreover, the user may modify the
rule set by interactively adding and deleting rules, and save this rule set for
future analysis. Our application generates Starburst rule processing models,
but could be customized to generate Promela models reflecting the execution
semantics of another rule system.

Furthermore, the interface itself can be used as a front end for generat-
ing rule processing models implemented with another Model Checking tool.
For example, we tried to model and analyze rule processing using SMV [15].
SMYV represents the state space of a model symbolically using boolean decision
diagrams (BDDs) [6, 15] allowing for extremely compact representations of
systems. In spite of all this, SMV did not perform well when applied towards
modeling and analyzing of rule behavior. One reason for this was SMV’s de-
scription language (see [15]), which did not allow us to easily model certain
aspects of rule behavior, such as non-deterministic selection of rules for con-
sideration. More specifically, SMV’s description language, unlike Promela,
has only a deterministic case-statement. Another factor might be the fact
that SMV uses a state-based framework. Such a framework made it difficult
to naturally model the interaction between an ADBMS’s environment and
system. In the end, even our simple four rule example could not be efficiently
modeled and analyzed with SMV. Taking efficiency aside, we were able to
automatically generate SMV models of Starburst rule processing under our
interface. This suggests that it is possible to construct a single interface un-
der which a variety of ADBMSs can be modeled using a variety of different
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modeling languages. The implementation details of our application are be-
yond the scope of this paper. Our motivation for building this tool was to,
hopefully, corroborate the practicality of Model Checking in the context of
ADBMSs.

5.1 ADBMS Model Checking Environment

We begin with an overview of our proposed interactive ADBMS Model Check-
ing environment. Figure 14 illustrates a high-level architectural description
of our approach. The boxes in this figure represent functional components of
the Model Checking environment, and arrows represent interaction between
components. Components within the dashed box belong to or are imple-
mented by the Model Checking application itself. In our case, this will be
Spin, but it could easily be a different Model Checking tool (for instance, a
tool custom built for Model Checking EATL formulas) capable of providing
the functionality necessary to implement our framework. The user interface
is not part of the Model Checking system, but offers its users a convenient
way of interacting with it. For example, our Java GUI takes rule informa-
tion and specifications provided by the user and produces a Starburst rule
processing model specified in Promela. Finally, the Model Checking system
must convey meaningful results back to the user. Spin’s countertrace facility,
which produces a graphical counterexample whenever a property is not sat-
isfied, is an excellent example of this type of information useful for analyzing
rule behavior. Of course, Spin will return only one possible countertrace
so the designer has to express the “essence” of that failure as a filter (a
formula of the specification logic) which weeds out unrealistic computation
paths and required to verify the model anew. Thus, debugging can be seen
as an incremental testing scheme.

At this point, let us focus on the functional components within the Model
Checking system, which include: rule information, environment routines
(simulating the environment states of our ADBMS), system routines (to sim-
ulate the system states of our concrete ADBMS), and the Spin tool. The
first three items are implemented by our Promela programs. We discuss this
encoding as well as the purpose of each component by means of our running
example (the complete Promela specification for Example 7, produced by
our Promela code generator, can be found in Appendix A). Then, we must
supply Spin with information about the properties we wish to analyze; those
can be expressed directly in our Promela program. Ultimately, Spin takes
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Figure 14: High-level view of our ADBMS Model Checking

environment.

the Promela specification of our rule processing model and produces a C
program which, when executed, verifies whether the properties we desire to
check hold in this model. In many respects, Promela’s syntax is somewhat
reminiscent of C. Consequently, this section assumes the reader has some
familiarity or intuitive understanding of C, Spin, and Promela. A more de-
tailed explanation of Spin and Promela can be found at the Spin website

[4].

5.2 Representation of Rules, States, and Transitions

In many respects, Promela provides much of the flexibility and power of any
ordinary programming language. For instance, Promela provides syntactic
constructs for declaring structures (such as records and arrays), global and lo-
cal variables (with the usual scoping rules), and processes (which can examine
and modify variables). In addition, Promela provides a mechanism for defin-
ing message passing channels, which enables synchronous or asynchronous
communication between two processes. Each of these constructs plays an in-
tegral part in implementing our rule processing framework. In particular, we
use these constructs to define representations for our model’s ECA rules (in-
cluding the events, tables, and fields which make up these rules), environment
and system states, environment and system state transitions, consideration
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set, and initial rule triggering transactions. The global variable declarations
for the Promela specification of Example 7 are illustrated in Figure 15. We
examine the purpose of these variables in the following subsections.

5.3 Rule Information

As indicated in Figure 15, we can use the typedef construct to define a
record ecarule which stores a variety of information about each of our four
ECA rules. The first three fields of this record store the event (plus the
associated table and field) that cause the rule to be triggered. The fourth,
fifth, and sixth fields keep the rule’s action (including its associated table
and field) that takes place if Starburst’s system chooses to execute the rule.
Of course, an EA rule should always be executed. Hence we keep a variable
rtype in our ecarule structure which indicates whether a particular rule
is an EA or ECA rule. Finally, we define an array of these records, rules,
which enables us to directly access each instance of our four rules whenever
necessary. The rules array is set to size N, where N is a constant indicating
the number of rules we are modeling.

Next, we must assign rules values representing the ECA rule definitions
given in Table 11. For that, it is necessary to explicitly indicate which events
and actions are allowable in our model. In Promela the mtype construct can
be used to define symbolic values which, in our case, are simply enumerations
representing the range of different events and actions our four rules might
consist of. The first six fields in ecarule are of type mtype, and, thus, must
be assigned one of these values. We do this by initializing each rule in rules
as shown in Figure 16. Notice that, after initialization, rules essentially
becomes a representation of Table 11. Note that the range of rules is 0. . 3.
Therefore, each rule r; in Table 11 is stored in rules[i-1].

5.4 The Consideration Set

Recall from Section 2 that rule processing begins after a user transaction
stimulates some rule triggering event. In Example 7, this initial transac-
tion was an update to Matt’s and Jasmine’s ranks in the emp table. In
our Promela model, we represent this initial transaction by initializing the
variables i_event, i_table, and i_field (each having type mtype) to the
values update, emp, and rank respectively, as shown in Figure 15. Also recall
that this initial transaction triggered two rules r; and r4 for consideration.
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#tdefine N 4 /*defines the number of rules in our modelx/

mtype = {update,retrieve,emp,bonus,empid,name,salary,raiseamnt,rank,all};
/*symbolic constants representing our ADBMS’s events, tables and fieldsx*/

typedef ecarule { /*record structure for storing rule information*/
mtype triggeredby; /*the first three fields represent the event*/
mtype triggeredtab; /*which causes this rule to be triggeredx*/

mtype triggeredfie;

mtype actionexec; /*the next three fields represent the actionx*/
mtype actiontab; /*that occurs if this rule is executed*/

mtype actionfie;

bool rtype /*rtype is set to 0 if this is an EA rulex/

}s /*rtype is set to 1 if this is an ECA rulex/

ecarule rules[N]; /*array for keeping our rule informationx/
bool c[N]; /#boolean array representing our consideration set*/

mtype i_event=update; /*our initial rule triggering transaction*/
mtype i_table=emp;
mtype i_field=rank;

chan selected = [0] of {byte};

/*communication interface between ADBMS’s environment and systemx/
chan action = [0] of {mtype,mtype,mtype,bool};

/*communication interface between ADBMS’s system and environmentx*/

bool done;
/*becomes true when consideration set is empty*/
/*this represents the termination of rule processingx/

int temp;
/*loop counter variablex/

Figure 15: Global declarations in our Promela program.
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init ()

{
rules[0]
rules[0]
rules[0]
rules[0]
rules[0]
rules[0]
rules[0]

rules[1]
rules[1]
rules[1]
rules[1]
rules[1]
rules[1]
rules[1]

rules[2]
rules[2]
rules[2]

rules[2].

rules[2]
rules[2]
rules[2]

rules[3]
rules[3]
rules[3]
rules[3]
rules[3]
rules[3]
rules[3]

.triggeredby=update; /*assign rule 1’s values*/
.triggeredtab=emp;

.triggeredfie=rank;

.actionexec=update;

.actiontab=bonus;

.actionfie=raiseamnt;

.rtype=1;

.triggeredby=update; /*assign rule 2’s valuesx*/
.triggeredtab=bonus;

.triggeredfie=raiseamnt;

.actionexec=update;

.actiontab=emp;

.actionfie=salary;

.rtype=0;

.triggeredby=update; /*assign rule 3’s valuesx*/
.triggeredtab=emp;

.triggeredfie=salary;

actionexec=retrieve;

.actiontab=emp;

.actionfie=all;

.rtype=1;

.triggeredby=update; /*assign rule 4’s valuesx/
.triggeredtab=emp;

.triggeredfie=rank;

.actionexec=retrieve;

.actiontab=emp;

.actionfie=all;

.rtype=0;

Figure 16: Initialization of our four ECA rules.

54

www.manharaa.com



Consequently, they were added to R., the consideration set. Our global
declarations from Figure 15 indicate that R. is represented as the boolean
array c in our Promela model. When a rule r; is triggered, we represent its
insertion into R, by setting the corresponding bit in ¢ (i.e. c[i-1]) to 1.
Likewise, when a rule is selected by Starburst’s environment and passed to
its system for evaluation and (possible) execution, it is removed from R. by
setting c[i-1] back to 0.

Every legal Promela program must consist of at least one main process,
init (). This process can initialize any global variables and instantiate other
processes. This fact is particularly important since Starburst’s environment
and system are modeled as two synchronous processes that will, ultimately,
be instantiated by init(). We examine this protocol in more detail later
on. For now, let us consider the initialization of our consideration set. Fig-
ure 17 illustrates the rest of the init () process which indicates how this
initialization can be handled in Promela.

Figure 17 introduces two important control flow statements that are an
integral part of any Promela model. Because the semantics of these struc-
tures in Promela is inherently different from their semantics in traditional
programming languages, they deserve to be explained in more detail. The do
structure allows us to simulate repetition in our model. Within the structure
itself we can have multiple execution sequences with each sequence being
preceded by a “::7. In the case of Figure 17 our do structure contains two
guarded sequences. The guard is the expression appearing on the left-hand
side of the =>. When a guard is evaluated, the statement(s) on the right-hand
side of the —> is only executed if the guard evaluates to true. Notice that the
guarded statements for the do loop in Figure 17 can be selected determinis-
tically, since temp must either be < N or >= N. In general, if more than one
guarded sequence is true (and, thus, executable at the same time), Spin eze-
cutes each sequence as a separate, possible computation path. Consequently,
Spin performs an exhaustive search by checking all possible computation
paths.

Figure 17 also shows that we are able to nest structures in Promela. For
instance, the first guarded sequence in the do loop contains an if (i.e. selec-
tion) structure. The semantics of this selection structure is similar to that
of the repetition structure. As before, a guarded statement can be executed
only if its guard evaluates to true. When a sequence is executed, the selection
structure is exited (and, in our case, control reverts back to the do loop); but
when none of the statements in a selection structure are executable the pro-
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temp=0;

do
(temp<N) -> /*while (temp<4) dox/
if
i_event==rules[temp] .triggeredby
&& i_table==rules[temp] .triggeredtab
&& i_field==rules[temp] .triggeredfie -> c[templ=1;
temp=temp+1
/*if the initial transaction triggers rule i, add rule i tox/
/*R. by setting cl[temp] to 1... increment temp*/
/*the if structure is exited and control passes back to the do loop*/
else -> temp=temp+1
/*otherwise, do not set c[temp] to 1, and simply increment temp*/
/*the if structure is exited and control passes back to the do loop*/
fi
(temp>=N) -> break
od;

done=0; /*done=0 indicates that R, is not empty*/
/*done will be set to 1 only when R. becomes*/
/*empty again, i.e. when rule processing terminatesx*/

atomic{run environment(); run system()}

}

Figure 17: Initialization of the consideration set.
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temp | associated rule | action

0 T c[0]=1; temp=temp+1
1 79 temp=temp+1

2 T3 temp=temp+1

3 T4 c[3]=1; temp=temp+1
4 N/A break (exit do loop)

Table 27: Initialization of the consideration set.

cess blocks until one of the guarded sequences within the structure becomes
true. Since this may newver happen, it is possible for a process to block for-
ever. There are two solutions to this potential problem. First, we can write
our guarded sequences in a manner that ensures deterministic behavior, as
we did in our do loop. Another option is to introduce the special guarded
sequence, else. The else option becomes true (i.e. executable) if and only if
all of the other guarded sequences in the same structure cannot be executed.
Thus, in Figure 17, when the first (and only) guarded sequence in the if
structure is false, else becomes true and temp is incremented.

Returning to the initialization of our consideration set, we begin by setting
a loop counter variable, temp, to 0. Next, the do loop is entered. Then,
for each of our four rules, the code checks rules to see if the initial event
“matches” the event which triggers that rule. If it does, we set that rule’s
corresponding bit in ¢ to 1 and increment the loop counter. Otherwise,
the corresponding bit is left set to 0. When temp becomes 4 the second
guarded sequence in the do loop becomes true and control exits the loop.
The following example demonstrates this process.

Example 27 In Example 7, the initial user transaction triggered two rules,
r; and r4. As a result, we stated that these rules should be added to R.. In
terms of our Promela model R, is represented by the boolean array c. The
value of ¢ is determined by iteratively checking whether or not r;’s associated
bit should be set to 1. This iterative process is summarized in Table 27.
Pictorially, after initialization, ¢ would appear as shown in Figure 18.

Our code initializes the boolean variable done to 0. Only when rule pro-
cessing terminates (i.e. R. becomes empty), will done be reset to 1. This
fact is particularly important since the problem of checking for termination
of rule processing has now been reduced to simply checking if done even-
tually becomes 1. After these initializations the ADBMS has entered envi-

57

www.manaraa.com



T T2 r3 T4

0 1 2 3

Figure 18: Representation of initial R. for Example 7 in
Promela.

ronment state ¢y where rule processing initially begins. The init () process
next instantiates two new processes: environment() and system(). The
atomic statement indicates that these two processes are to be executed in a
non-interleaved fashion. This notion accurately reflects the semantics of our
model since we can think of rule processing as synchronized communication
between an ADBMS’s environment and its system.

5.5 States and State Transitions

In our Promela specification, we model Starburst’s environment and system
as two synchronous processes: environment () and system(). State tran-
sitions are modeled as single buffer communication channels. Our global
declarations in Figure 15 indicate two such channels: selected and action.
When the environment process selects a rule for consideration, it sends the
number of the rule chosen to the system via the channel selected. This
represents a transition ¢ = s from an environment state to a system state.
Similarly, the system may or may not choose to execute a selected rule’s
action. It communicates this information (along with information about the
rule’s action in the case that it is executed) by way of the action channel.
Depending on how the system chooses, this communication represents an
s X cors 3 ¢ transition from a system state back to an environment
state. We can ensure that rule processing proceeds in a strictly alternating
fashion by imposing the following restrictions in our Promela model:

e When the environment process selects a rule for consideration and sends
it to the system process, it must wait for the system process to com-
municate its corresponding action.

e When the system process communicates its action (with respect to a
selected rule) back to the system, it must wait for the environment
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process to choose the next rule for consideration and send it to the
system.

Figures 19 and 20 show how our environment and system processes are im-
plemented in Promela. Let us see how these processes implement a strict
alternation of environment and system moves. The system process is essen-
tially in an infinite do loop which must wait for a message to be sent by
the environment. The first statement in this do loop, selected?rulenum,
receives the number of the rule selected for consideration by the environ-
ment from channel selected and stores it in rulenum. In Promela receive
statements are only executable if a message actually exists in the associated
channel. If there is no message in the channel, the process must wait for a
message to arrive. Therefore, system() will never be allowed to proceed until
after environment () selects the first rule for consideration and sends the rule
number, via selected, to the system. This fact is quite important because
it ensures that the environment always proceeds first when rule processing
begins (i.e. when init () initially instantiates system() and environment ().

5.5.1 The Environment Process

The environment process also executes a do loop which will be exited only
after rule processing terminates (more on this later). The first selection
structure in environment () is executed immediately after this process is
instantiated and models how Starburst selects a rule for consideration. We
demonstrate this protocol in the next example.

Example 28 Recall that initially vy and r, are in R.. Starburst’s envi-
ronment must select one of these rules for consideration and pass it to the
system for possible execution. When the environment process begins its exe-
cution, the first if structure is evaluated, and one of its guarded statements
executed. Table 28 summarizes how Spin determines which statement to
execute.

As indicated in this table, only the sequence guarded by c[3]==1 is
allowed to execute. This sequence removes r, from the consideration set
(i.e. ¢[31=0) and sends the number of the rule selected to the system process
via channel selected (i.e. selected!3). Hence, we enforce the fact that ry
has a higher priority than r; by specifying that r; can only be selected if
c[3]==0 (i.e. 7y can only be selected if r, is not in the consideration set).
This demonstrates how easy it is to model Starburst’s conflict resolution
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proctype environment ()

{
mtype event,table,field;
bool fire;

/*choose a rule for consideration and send it to system()*/
end:do
: if
/*since rule 4 has priority over rule 1,*/
/*rule 1 should only be selected if rule 4 isx*/
/*not in R.*/
:: (c[0]==1) && (c[3]==0) -> c[0]=0;

selected!O
c[1]==1 -> c[1]=0;
selected!1
: c[2]==1 -> c[2]=0;
selected!?2
c[3]==1 -> c[3]=0;
selected!3
: else -> progress: done=1; break

fi;

/*after control pass to system(), the environment waits forx/
/*the system to respond*/

action?event,table,field,fire;

/*determine which rules were triggered by the system’s action*/
/*this is the same routine as in the init() processx*/
temp=0;
do
:: (temp<=N) ->
if
:: event==rules[temp].triggeredby
&& table==rules[temp] .triggeredtab
&& field==rules[temp].triggeredfie && fire==1 -> c[templ=1;
temp=temp+1
else -> temp=temp+1;
fi
(temp>N) -> break

od
od
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proctype system()

{

int rulenum;
mtype event,table,field;

end:do
/*receive the selected rule from the environment*/
selected?rulenum;
/*determine the selected rule’s associated action*/
event = rules[rulenum].actionexec;
table = rules[rulenum].actiontab;
field = rules[rulenum].actionfie;
if
/*if an EA rule is under consideration always execute its actionx*/
rules[rulenum] .rtype==0 -> action'!event,table,field,1
rules[rulenum] .rtype==1 ->
/*if an ECA rule is under consideration, non-deterministically choosex/
/*whether or not to execute its action*/
if
: action!event,table,field,O
:: action'!event,table,field,1
fi
fi
od

Figure 20: System process in our Promela model.

guard value action

c[0]==1 && c[3]1==0 | O (false) | N/A

c[1]== 0 (false) | N/A

c[2]== 0 (false) | N/A

c[3]== 1 (true) | c[31=0; selected!3
else 0 (false) | N/A

Table 28: Summary of rule selection from R, (partial prioritization) .
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guard value action

c[0]==1 | 1 (true) | c[1]=0; selected!1l
c[1]==1 | 0 (false) | N/A

c[2]==1 | 0 (false) | N/A

c[3]==1 | 1 (true) | c[3]1=0; selected!3
else 0 (false) | N/A

Table 29: Summary of rule selection from R, (no prioritization).

policy in Promela. Table 29 summarizes the effects of r; and r, having the
same priority on Spin’s determination of which statement to execute. Now
two guarded sequences are executable. As mentioned in Subsection 5.4, Spin
verifies both possibilities. In this fashion, Spin checks all possible execution
paths when performing verification. This could not be done in SMV since its
case-statement is deterministic.

Once a rule is selected and sent to the system process, the if structure is
exited and control passes to the statement following this structure. According
to Figure 19 this would be the statement action?event,table,field,fire
implying that it is the system’s turn to execute since environment () must
wait for system() to make a decision regarding the rule currently under
consideration (r4) and send it back to the environment via channel action.

5.5.2 The System Process

In Example 28 we indicated that the environment chose 7, and sent its cor-
responding rule number (i.e. 3) to the system via channel selected. At
this point the statement selected?rulenum becomes executable. Thus, the
system process receives the value 3 from this channel and store it in the vari-
able rulenum. Referring to Figure 20, system() accesses rules to determine
what action is associated with this rule.

Finally, the system must decide whether or not it should execute the rule’s
action. This determination is handled by a nested selection structure. If an
EA rule is under consideration (i.e. rtype==0), then the system executes the
statement, action!event,table,field,1 where 1 indicates that the rule’s
action was executed. If an ECA rule is under consideration (i.e. rtype==1),
system() non-deterministically chooses to execute either:

e action'!event,table,field,0 (do not execute this rule’s action), or
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guard value action

N/A N/A event=rules[3].actexec
N/A N/A table=rules[3].acttable
N/A N/A field=rules[3].actfield
rules[3] .rtype==0 | 1 (true) | action!retreive,emp,all,l

Table 30: Summary of system process upon receiving ry.

e action'event,table,field,1 (execute this rule’s action).

As before, when performing verification, Spin actually analyzes both situa-
tions. The following example illustrates this entire process.

Example 29 Let us go back to the point where system() receives the rule
selected by environment () for consideration. Table 30 summarizes which
statements are subsequently executed by system(). As shown in this ta-
ble, the system process sends a message back to the environment process
indicating r4’s action, and the fact that this action was executed.

Upon completing this process, system() returns back to the top of the
do loop. There it waits for the next message to be sent by environment ().
Realize, however, that if rule processing terminates, system() is left waiting
forever. We handle this problem by preceding the do loop with an end: label.
This label alerts the Spin verifier that we expected this situation to arise and
that it should not report an error.

5.5.3 The Environment Process revisited

Recall that environment () was awaiting system()’s decision regarding rule
r4. The statement action?event,table,field,fire takes the message sent
by system() and stores the actual values (i.e. retrieve, emp, all, 1) in the
corresponding variables. Next, the environment must determine which new
rules (if any) r4’s action triggered. As shown in Figure 19 this is handled
in almost exactly the same manner as demonstrated in Example 27. The
only difference is that we must make an additional check to see if the system
actually executed the previous rule’s action. If it did not, then clearly no new
rules will be triggered. In our case, r4’s action was executed. However, recall
from Example 7, that its action did not trigger any new rules. Therefore,
the next rule which is chosen for consideration is ;. The process described
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in the three preceding subsections is iterative and continues until all the bits
in ¢ become 0. When this happens the environment won’t have any rules to
select for consideration. Thus, the else statement becomes executable. As
we alluded to earlier, done=1 indicates rule processing terminates and break
forces the environment process to exit its do loop.

5.6 ADBMS Verification using Spin

The Promela program presented above describes a model of rule processing
for Example 7. In order to model a different set of rules, we would need to
write another Promela program for that particular rule set. Clearly, this can
become quite inconvenient, especially since it is often the case that we wish to
examine the effect that simple changes to our rule set have on rule behavior
(such as the effect of adding a particular rule to a rule set on rule behavior).
Fortunately, we can easily isolate patterns in our Promela program. This
makes it feasible to automatically generate Promela models of rule process-
ing. For this reason, we have developed an interactive tool for generating
Promela rule processing models for the Starburst rule system. This tool was
primarily an experimental effort; however, we hope that our endeavors mo-
tivate future, more dedicated efforts along these lines. We used our tool to
generate models of rules processing for rule sets of various sizes and complex-
ity. Then we analyzed properties such as termination, confluence, and rule
integrity constraints.

5.6.1 Termination

Checking that a given set of rules is guaranteed to terminate is surprisingly
simple with Spin. We check for termination by including the progress: label
in the guarded statement else -> progress: done==1; break. Recall that
this statement is only executable if all of the bits in the boolean array c are
set to 0; but this means that R, is empty and rule processing has terminated.
If rule processing never terminates, ¢ always has at least one bit set to 1.
Consequently, if rule processing never terminates, the else statement is never
executed and the progress: label is never reached! We can direct Spin to
report an error whenever this situation arises. Such an error would indicate
that rule processing may not terminate. On the other hand, if Spin reports
no errors, then rule processing is guaranteed to terminate.
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It is important to keep in mind that no matter which rule behavior prop-
erties we analyze only positive results obtained during verification are con-
clusive. For instance, we can be assured of a terminating rule set provided
that Spin reports no errors. An error report, however, merely indicates that
rule processing may not terminate. If this occurs it is up to the rule designer
to interactively evaluate the results returned by Spin (such as the counterex-
ample produced) and draw his or her own conclusions. As suggested in [1], it
may very well be the case that errors reported by verification are cases that
are unlikely or never occur in the actual rule system.

5.6.2 Rule Integrity Constraints

Determining whether the consideration of one rule eventually leads to con-
sideration of another rule is also quite simple in Spin. We handle this using
the LTL formula [1(c[i]==1 -> <>(c[jl==1)) where i,j < N. Mnemoni-
cally, this formula reads “For all paths, it is always the case that whenever
i 15 under consideration, then r; is eventually under consideration.”. We
can save this formula in a file and import it directly into our Promela model
using the #include command, as shown in the model of Example 7 given in
Appendix A.

5.6.3 Confluence

In [1] it is suggested that checking confluence for a rule set is a difficult prob-
lem at best. Nevertheless, [1] provides a number of useful theorems and algo-
rithms which, ultimately, can aid rule designers in their efforts to achieve a
confluent rule set. Specifically, they propose a confluence requirement which,
if satisfied, guarantees that a given rule set is confluent. Additionally, they
provide an algorithm for determining if a set of rules satisfies that confluence
requirement. This algorithm takes as input two rules, r; and r;, such that
both rules have the same priority. The output of this algorithm is two sets
of rules, Ry and Ry. Then, in order to meet the confluence requirement, it
is necessary to show that for each pair of rules r € Ry and r’ € Ry, r and '
commute (we discuss how to determine if two rules commute in a moment).
The difficulty in applying this algorithm comes from the fact that it must be
performed for all rule pairs, r; and r;, such that both rules have the same
priority. As pointed out in [1], this is an extremely conservative approach
and could be made more efficient by eliminating “unreasonable” cases with
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additional analysis. Consequently, we believe rule analysis in our framework
can be effectively used in conjunction with the confluence requirement al-
gorithm by isolating certain rule pairs for which it is not even necessary to
apply the confluence requirement algorithm, and providing a “tool box” of
specifications for determining whether a pair of rules commute.

5.6.4 A Tool Box of Properties

As in [1], confluence analysis under our framework is a step-by-step, user
interactive verification process. We supply the rule designer with a “tool
box” of useful specifications which aid him or her in this process. These
specifications can then be used to draw conclusions regarding a rule set’s
satisfaction of the confluence requirement (or lack thereof).

We first address the problem of eliminating certain rule pairs for which
it is not necessary to apply the confluence requirement algorithm. In [1],
they observe that in actuality it is not necessary to apply this algorithm
to all pairs. As mentioned earlier, their algorithm constitutes an extremely
conservative approach. In fact, the algorithm need only be applied to all rule
pairs, r; and r;, such that both rules have the same priority and both rules are
under consideration at the same time. In terms of our framework, this would
mean that we must only consider pairs of rules that are under consideration
together at some environment state, ¢ € C. We can easily isolate such rules
in our Promela models by checking our boolean array c each time we enter
the environment process. It would then be up to the user to determine if
the two rules have the same priority. For instance, in Example 7, r; and
ry were both under consideration at the same time. However, since r4 has a
higher priority than r;, we would simply ignore this situation. Moreover, this
property is expressible in EATL. Eliminating rule pairs in such a systematic
fashion could make confluence analysis yield more accurate results and make
confluence analysis efforts more effective.

In [1] a number of sufficient conditions for the non-commutativity of rules
are given. Specifically, rules r; and r; may be non-commutative if any of the
following hold (if none of these hold, then r; and r; do commute):

1. r;’s consideration can eventually lead to r;’s consideration,
2. r;’s actions can affect what r;’s reads (i.e. r;’s data retrieval),

3. r;’s insertion actions can affect r;’s updates or deletions,
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4. r;’s updates can affect r;’s updates, and
5. any of the above when we reverse r; and r;.

We are currently working on developing a tool box of specifications for ana-
lyzing such properties. We believe that these properties can be conveniently
expressed in LTL and effectively analyzed by Spin.

5.6.5 Results of our ADBMS Verification

We analyzed termination, rule integrity constraints, and deterministic order-
ing properties for a set of twenty ECA rules. In order to test the accuracy
of our model we seeded it with various violations to these properties. In
all cases, Spin flagged these errors and provided a visual counterexample of
where the property failed. As suggested previously, Spin’s countertrace fa-
cility is extremely informative. For instance, in the case of non-termination,
Spin flagged the violation and showed exactly which rule caused it. In ad-
dition, along with the countertrace, Spin provides verbose details of the
Promela model’s execution. Since this feature displays the values of each
variable during the run of the program, it can be used for interactive debug-
ging.

As expected, the amount of time and memory needed to perform verifica-
tion appears to be directly dependent on the amount of non-determinism we
introduced in our model. Initially we designed our twenty rules to trigger in
a “chain-like” fashion: r; — r9 — ... — r99. When checking for termination,
our model required about 5,000 states. We then changed the first ten rules to
EA rules. Of course this makes our model more deterministic since for these
ten rules, there is only one possible execution of their actions. As expected,
the size of the state space decreased to about 9,000 states.

As a final test, we introduced more non-determinism by decomposing
our chain structure. This meant that at any given time during rule pro-
cessing it was likely that two or more (non-prioritized) rules would be under
consideration at the same time. The effect of this non-determinism caused
the state space to grow quite dramatically. In one case the size of the state
space reached 215,000 states. This effect clearly indicates that, as with many
systems, ours is susceptible to the “state-explosion” problem [10]. Upon pri-
oritizing these rules (i.e. reducing the amount of non-determinism) the state
space decreased considerably.
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Our current analysis efforts are focused on studying the scalability of
our Model Checking scheme. In particular, we wish to determine how large
of a rule set we can reasonably analyze. We speculate the answer to this
question is not entirely conclusive. Clearly, our current results show that the
number of rules we can analyze is a function of those rule’s interdependency.
Still, there are a variety of ways to overcome the problem of Model Checking
larger rule sets. For example, [1] suggests that it often the case that large
rule sets can be “partitioned” into smaller, independent groups of rules. Since
rules in one group could not affect the behavior of rules in another group,
each partition could be analyzed separately, hence alleviating the size of the
state space. Such an approach would also be incremental. Thus, if a rule is
added to one group, analysis would need to be repeated only for that group.
Ultimately, we feel benefits such as these make Model Checking a suitable
and effective approach to analyzing rule behavior.

6 Conclusions

The purpose of this paper was to propose a framework for analyzing rule be-
havior in active database management systems. As our examples have shown,
analysis of rule behavior can be quite difficult, even in seemingly simple sit-
uations. To make matters worse, many of the properties that rule system
designers are interested in are undecidable in the general case. Nevertheless,
our work indicates that it is possible to develop methods and tools which
can, at the very least, aid designers in their efforts. Specifically, we sug-
gested a Model Checking methodology as a feasible, practical, and effective
approach for analyzing rule behavior. Historically, this approach has been
directed towards verifying concurrent, reactive systems. We have modeled
ADBMS:s as such reactive systems and their subtle behaviors are reminiscent
of those which occur in the design and implementation of concurrent systems.
In order to apply Model Checking to our problem, it was first necessary to
design a framework that allowed us to model an ADBMS in a finite number
of states. We believe our model of rule processing presented in Section 3 is
an effective solution to this problem. In particular, we were able to abstract
details about data stored in an ADBMS’s database at an adequate level and
focus our efforts towards analyzing the behavior of the rules themselves. By
separating decisions made by an ADBMS’s environment and its underly-
ing system our methodology provides a generic framework for modeling any
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ADBMS, regardless of its operational semantics. By considering all possible
rule processing scenarios, our model accurately reflects anything that may
occur in the actual rule system.

Moreoever, we have examined the possibility of applying existing Model
Checking tools. In addition to applying Spin towards this effort, we have
examined the performance of other model checkers under our general ar-
chitecture. Specifically, we attempted to use the Symbolic Model Verifier
(SMV) [15]. We found that SMV’s input language did not easily lend itself
towards modeling such things as rule priorities. Thus, we were unable to
effectively model Starburst’s conflict resolution policy in SMV. Still, we ex-
amined SMV’s performance at verifying models of non-prioritized rule sets.
In this case, SMV’s performance degraded noticeably as the number of rules
increased.

In the future, we plan to examine a number of possible improvements
to our framework. In addition to our current work mentioned at the end
of Section 5 we would like to add more detail to our Promela models in
an effort to obtain more fine-grained rule analysis. For instance, by adding
an additional selection structure in our environment process, we can easily
simulate rule untriggering. Such a feature would indicate that it is possible
for one rule’s action to cause another rule, previously in R, to be removed
from R, before it is ever selected for consideration.

We are also interested in exploring techniques for combating the ob-
served state-explosion, caused by increased rule interdependency and non-
determinism. Along these lines, we examine the possibility of filter-based
refinement [13], to “filter out” or eliminate unlikely or impossible computa-
tion paths.

While GUIs are fashionable at the time, there are several good reasons
for having a domain-specific language (DSL) for formulating rule systems.
For example, if a rule system is represented as a program then one can use
conventional tools of program analysis such as partial evaluation and abstract
interpretation. Ideally, such a DSL would be based on several actual RDLs
in order to allow simple translations of real rule systems into such a DSL.

Finally, we wish to provide additional enhancements to our user inter-
face. Such enhancements would include, among other things, more efficient
code generation, additional options which allow users to easily define their
own, customized specifications, and a standard API for creating “libraries”
of different ADBMS environments.

69

www.manaraa.com



A Promela Specification of Example 7

#define N 4 /*defines the number of rules in our model*/

mtype = {update,retrieve,emp,bonus,empid,name,salary,raiseamnt,rank,all};
/*symbolic constants representing our ADBMS’s events, tables and fields*/

typedef ecarule { /*record structure for storing rule information*/
mtype triggeredby; /*the first three fields represent the event*/
mtype triggeredtab; /*which causes this rule to be triggered*/

mtype triggeredfie;

mtype actionexec; /*the next three fields represent the action*/
mtype actiontab; /*that occurs if this rule is executed*/

mtype actionfie;

bool rtype /*rtype is set to O if this is an EA rulex/

+s /*rtype is set to 1 if this is an ECA rulex/

ecarule rules[N]; /*array for keeping our rule information*/
bool c[N]; /*boolean array representing our consideration set*/

mtype i_event=update; /*our initial rule triggering transaction*/
mtype i_table=emp;
mtype i_field=rank;

chan selected = [0] of {byte};

/*communication interface between ADBMS’s environment and systemx/
chan action = [0] of {mtype,mtype,mtype,bool};

/*communication interface between ADBMS’s system and environmentx/

bool done;

/*becomes true when consideration set is empty*/
/*this represents the termination of rule processing*/
int temp;

/*1loop counter variablex/

init ()
{
rules[0] .triggeredby=update; /*assign rule 1’s values*/
rules[0] .triggeredtab=emp;
rules[0] .triggeredfie=rank;
rules[0] .actionexec=update;
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rules[0] .actiontab=bonus;
rules[0] .actionfie=raiseamnt;
rules[0] .rtype=1;

rules[1] .triggeredby=update; /*assign rule 2’s values*/
rules[1] .triggeredtab=bonus;

rules[1] .triggeredfie=raiseamnt;

rules[1] .actionexec=update;

rules[1] .actiontab=emp;

rules[1] .actionfie=salary;

rules[1] .rtype=0;

rules[2] .triggeredby=update; /*assign rule 3’s values*/
rules[2] .triggeredtab=emp;

rules[2] .triggeredfie=salary;

rules[2] .actionexec=retrieve;

rules[2] .actiontab=emp;

rules[2] .actionfie=all;

rules[2] .rtype=1;

rules[3] .triggeredby=update; /*assign rule 4’s values*/
rules[3] .triggeredtab=emp;

rules[3] .triggeredfie=rank;

rules[3] .actionexec=retrieve;

rules[3] .actiontab=emp;

rules[3] .actionfie=all;

rules[3] .rtype=0;

temp=0;

do
(temp<N) -> /*while (temp<4) dox/
if
i_event==rules[temp] . triggeredby
&& i_table==rules[temp] .triggeredtab
&& i_field==rules[temp] .triggeredfie -> c[templ=1;
temp=temp+1

/*if the initial transaction triggers rule i, add rule i tox/
/*R. by setting cl[temp] to 1... increment tempx*/
/*the if structure is exited and control passes back to the do loop*/
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else -> temp=temp+1

/*otherwise, do not set c[temp] to 1, and simply increment temp*/
/*the if structure is exited and control passes back to the do loop*/
fi
(temp>=N) -> break
od;

done=0; /*done=0 indicates that R. is not emptyx*/
/*done will be set to 1 only when R. becomes*/
/*empty again, i.e. when rule processing terminatesx*/

atomic{run environment(); run system()}

}

proctype environment ()
{
mtype event,table,field;
bool fire;

/*choose a rule for consideration and send it to system()*/
end:do
if
/*since rule 4 has priority over rule 1,*/
/*rule 1 should only be selected if rule 4 isx*/
/*not in R.*/
1t (c[0]==1) && (c[3]==0) -> c[0]=0;

selected!O
c[1]==1 -> c[1]=0;
selected!1
c[2]==1 -> c[2]=0;
selected!2
c[3]==1 -> c[3]=0;
selected!3
:: else -> progress: done=1; break
fi;

/*after control pass to system(), the environment waits forx/
/*the system to respond*/
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action?event,table,field,fire;

/*determine which rules were triggered by the system’s action*/
/*this is the same routine as in the init() process*/
temp=0;
do
(temp<=N) ->
if
event==rules[temp] .triggeredby
&& table==rules[temp].triggeredtab
&& field==rules[temp].triggeredfie && fire==1 -> c[temp]l=1;
temp=temp+1
else -> temp=temp+1;
fi
(temp>N) -> break
od
od

proctype system()
{
int rulenum;
mtype event,table,field;

end:do
/*receive the selected rule from the environment*/
selected?rulenum;
/*determine the selected rule’s associated actionx/
event = rules[rulenum].actionexec;
table = rules[rulenum].actiontab;
field rules[rulenum] .actionfie;
if
/*if an EA rule is under consideration always execute its actionx/
rules[rulenum] .rtype==0 -> action!event,table,field,1
rules[rulenum] .rtype==1 ->
/*if an ECA rule is under consideration, non-deterministically choosex*/
/*whether or not to execute its action*/
if
action!event,table,field,O
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:: action!event,table,field,1
fi
fi
od
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