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A Framework for Model CheckingActive Database Management SystemsTarek S. Ghazi and Michael HuthDepartment of Computing and Information SciencesKansas State University, Manhattan, KS66506, USAfghazit,huthg@cis.ksu.eduApril 20, 1998AbstractAn active database management system (ADBMS) augments aconventional DBMS with the capability to automatically react to stim-uli occurring within and outside a database. Intuitively, this requiresa DBMS to possess some degree of \knowledge". Such knowledge canbe provided by incorporating a DBMS with a set of rules which deter-mine the actions a DBMS should automatically execute when certainevents and conditions arise. The advantages of ADBMSs have beenwell documented. ADBMSs can be used to enforce and manage in-tegrity constraints, provide security in databases, and act as alertersor triggers. However, it has also been noted that determining the e�ectof interaction between groups of rules is di�cult at best. For example,one would like to be sure that the execution of some chain of rules isguaranteed to terminate; or that a set of rules interacts in a mannerthat is consistent with the intended semantics conceived by their de-signer. The purpose of this paper is to examine Model Checking as apossible framework for automatically analyzing ADBMSs. Our frame-work provides the basis for development of a tool that can be used toisolate properties of a given rule set's behavior. Such a veri�cationtool is critical for supporting the pre-development analysis and designof realistic ADBMSs. We also implemented signi�cant parts of ourframework directly in the veri�cation tool Spin by writing a GUI forrule design and a Promela code generator.1
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5 ADBMS Model Checking 475.1 ADBMS Model Checking Environment . . . . . . . . . . . . . 505.2 Representation of Rules, States, and Transitions . . . . . . . 515.3 Rule Information . . . . . . . . . . . . . . . . . . . . . . . . . 525.4 The Consideration Set . . . . . . . . . . . . . . . . . . . . . . 525.5 States and State Transitions . . . . . . . . . . . . . . . . . . . 585.5.1 The Environment Process . . . . . . . . . . . . . . . . 595.5.2 The System Process . . . . . . . . . . . . . . . . . . . 625.5.3 The Environment Process revisited . . . . . . . . . . . 635.6 ADBMS Veri�cation using Spin . . . . . . . . . . . . . . . . . 645.6.1 Termination . . . . . . . . . . . . . . . . . . . . . . . . 645.6.2 Rule Integrity Constraints . . . . . . . . . . . . . . . . 655.6.3 Conuence . . . . . . . . . . . . . . . . . . . . . . . . . 655.6.4 A Tool Box of Properties . . . . . . . . . . . . . . . . . 665.6.5 Results of our ADBMS Veri�cation . . . . . . . . . . . 676 Conclusions 68A Promela Speci�cation of Example 7 701 Introduction1.1 Active Database Management SystemsWith a conventional DBMS, insertions, deletions, and other manipulations ofdata are performed via user commands or application programs that modifya database. From this perspective, a DBMS is passive, since it only respondsto commands that it receives explicitly [14]. This potentially limiting charac-teristic of DBMSs is the primary motivation behind recent attempts to inte-grate database systems with sets of rules that de�ne the circumstances whena DBMS may execute some actions automatically [18]. An active databasemanagement system (ADBMS) provides this additional capability over a con-ventional, \passive" database by adding features allowing one to de�ne rulesthat will be processed automatically when certain events, such as changes tothe database state, arise [12]. Thus, issues such as enforcement and man-agement of integrity constraints, database security, and alerting users whenimportant events occur may be automated [1, 18].3
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As the popularity of active database management systems has grown, sohas the demand for tools assisting ADBMS designers, users, and administra-tors who wish to analyze how a group of rules will behave [12]. Predictinghow a group of rules will interact with one another in all situations, however,is di�cult at best [20]. In spite of these facts, the supply of such tools haslagged far behind demand. In light of this, methods for analyzing behavior ofrules under the Starburst rule system represent a major step in the right di-rection and provide a foundation for developing interactive tools that wouldaid ADBMS designers in predicting rule behavior [1, 8, 21, 22]. This makesStarburst an important benchmark against which new e�orts at analyzingrule systems should be compared.1.2 Model CheckingModel Checking is an approach to validating hardware and software, whichhas become popular within the past decade [7]. Under this approach, veri�-cation is not performed on the actual system. Instead, one builds an abstractmodel of the system that excludes many real features of the actual physicalsystem, allowing one's focus to be directed towards only those features neces-sary to verify a particular property at hand [7]. Properties of such a systemare written in some type of temporal logic [11, 15, 16, 17]. Ultimately, oneis interested in verifying the correctness of these properties with respect tothe abstract model, and then extrapolate these results to the actual system.Model Checking o�ers some unique advantages over other popular ap-proaches of veri�cation. The most distinct advantage is automation [7, 11].Model Checking relies on e�cient algorithms that serve as the foundationfor model checkers, which implement these algorithms [7, 11, 17]. Given anabstract model of a system and a property speci�ed in some temporal ormodal logic, a model checker automatically determines whether the propertyholds in that particular model [11]. Perhaps even more importantly, modelcheckers can be used to construct an execution trace that shows why a prop-erty did not hold with respect to a given model, facilitating future debuggingof the system [10, 4].1.3 MotivationAccording to [16], computerized systems can be broken down into two distinctcategories: transformational and reactive. In the transformational view, a4
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system receives input data, performs some operation on that data, and pro-duces some output upon termination. This view implies that the abstractmodel of a transformational system consists of an initial state, some inter-mediate states, and a �nal state [16].The computational paradigm of reactive systems, on the other hand, isnot so intuitive. Reactive systems do not have principal beginning and endingstates. As their name implies, reactive systems may respond to a variety ofevents at any time. Because of this, Pnueli suggests that modeling a reactivesystem requires enhancing the model by incorporating information about thesystem's interaction with its environment [16]. This is necessary if we wishto accurately reason about the system's behavior in response to a particularevent. Thus, an event can be seen as a transition from one state to thenext, and a series of events can be viewed as a possible execution path of thesystem. In order to reason about such sequences of events, Pnueli proposesthe use of temporal logic to code speci�cations of a system.Application of temporal logics to specify system properties is nothingnew. E�cient model checkers for linear-time temporal logics (LTL) andbranching-time temporal logics, such as CTL, already exist [7, 11, 15]. Thesemodel checkers make use of special algorithms and data structures that allowrepresentations of abstract models to be stored compactly, and speci�cationformulas to be analyzed automatically [11]. Unfortunately, both CTL andLTL can only be naturally applied to closed systems, which depend only onstates of the system. Open systems, on the other hand, must be characterizedby their behavior in a particular environment [2]. Any ADBMS is reactivesince its functionality requires that it be able to respond automatically tocertain events [12]. It may also be characterized as open since its behaviormay change according to decisions made by its environment [20]. Thus, itwould be di�cult to directly apply CTL or LTL as a means of describingan ADBMS's behavior without explicitly including assumptions about anADBMS's environment.Therefore, the aim of this paper is to e�ectively develop a Model Check-ing methodology for the problem of verifying properties of active databasemanagement systems. We present a framework for constructing an abstractmodel of an ADBMS that captures the behavior of the ADBMS in the contextof any decisions made by its environment. In order to empirically evaluateour methodology, we apply our framework toward analyzing a sample rulebase, which will be constructed using an ADBMS similar to the Starburstrule system [1, 8, 21, 22]. However, one should realize that the true advan-5
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tage and power of our approach is its exibility. Unlike current e�orts atanalyzing rule systems, our application of Model Checking can be used asa generic framework for any ADBMS regardless of its unique operationalsemantics. Furthermore, we o�er Event-Action Temporal Logic (EATL), acustomized branching-time temporal logic that can be used to specify prop-erties we wish to verify under this model. Finally, we demonstrate how exist-ing model checkers can be creatively applied towards analyzing ADBMSs. Inparticular, we formally analyze rule processing for the Starburst rule systemusing Spin [4], an LTL model checker, and its modeling language, Promela.We show how, given explicit information about Starburst's rule processingenvironment, Promela can be used to model di�erent rule processing scenar-ios. Moreover, we have developed a simple, interactive GUI environment forgenerating Promela models of these rule processing scenarios. We believethe development of di�erent \libraries", each generating models of uniqueADBMSs could be consolidated under a single, user-friendly interface. In-deed, such a tool would make it feasible for any ADBMS designer, user, oradministrator to e�ectively analyze rule behavior.2 ADBMS FunctionalitySimilar to conventional DBMSs, there is a general consensus about whatfunctional components an ADBMS should possess. These additional featuresof an ADBMS are considered the minimum essentials necessary to give aconventional DBMS an \active" functionality [12]. Starburst is no exception,and clearly reects this consensus. Therefore, our approach to explainingnecessary ADBMS functionality is by means of Starburst as an example.We begin with an ordinary DBMS and incrementally construct an ADBMSin the spirit of the Starburst rule system [1, 8, 21, 22]. At the end of thissection, we present a simple functioning rule system, which o�ers a subset ofStarburst's features. This simple system will serve as our running examplein unfolding our proposed ADBMS Model Checking methodology.The ADBMS we design is simple, but practical; it keeps a database stor-ing employee and salary information for a �ctitious corporation. We designa number of rules reecting the organization's bonus and salary policy. Ulti-mately, we wish to modelcheck our rule system in order to verify the consis-tency of its implementation with our design. In Section 4, we discover that,although our sample ADBMS is small, subtle mistakes in rule design can still6
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emp table table containing employee informationempid unique employee id numbername name of employeesalary current salary of employeerank range from 1..10 of possible ranks (10 is the highest)bonus table table containing salary increase informationempid unique employee id numberraiseamnt dollar amount of next raiseTable 1: De�nition of tables and �elds in our corporate database.occur quite easily.2.1 The underlying DBMSAs their name implies, an ADBMS must subsume a DBMS; it must provideall the functionality of a DBMS and can in fact be used as a conventionalsystem by simply ignoring its active components [12]. It is important to notethat the underlying DBMS of a rule system can be based on any type ofdata model. For example, HiPAC [14] builds its rule system over an object-oriented DBMS, but the Starburst ADBMS is an extension of the Starburstrelational DBMS [21]. Although HiPAC and Starburst rely on di�erent un-derlying data models, both provide the standard ADBMS functionality de-scribed in this section. The following example de�nes a simple relationalDBMS scheme we use as part of our running example throughout this paper.Example 1 Consider the following relational DBMS scheme, consisting oftwo tables.emp(empid, name, salary, rank)bonus(empid, raiseamnt).Assume these tables make up the database of our rule system which maintainsemployee and salary information for some corporation. Table 1 summarizesthe contents of the database (the primary key for each table is underlined).As suggested earlier, we wish to de�ne some rules over this scheme.
7
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2.2 Adding Rules to the DBMSGiven the relational database scheme in the previous example, we need amechanism for de�ning rules over it. We intend to design a set of rulesthat automatically enforces our corporate's policy regarding employee salariesand bonuses. According to [12], an ADBMS must provide a mechanism forde�ning and managing Event-Condition-Action (ECA) rules. The ECA ruleparadigm follows the syntax:ON [Event ] IF [Condition] DO [Action].By examining each syntactic category (i.e. event, condition, action) of thisstatement in detail we naturally gain the required insights into its semantics.2.2.1 EventsIt is important to distinguish between events and event types. For instance,multiple events may occur for a given event type [12]. Table 2 depicts thisidea. It is necessary to de�ne an event for each rule in our rule base. After all,this attribute determines the circumstances under which the rule is initiallysignaled or triggered [12, 14]. The events we may choose from depend on theevent types our rule system is able to recognize. Starburst recognizes datamodi�cation operations as possible rule triggering events [1, 8, 21, 22]. In thecase of the three data modi�cation operations seen in Table 2, most ADBMSs,including Starburst, allow us to augment the name of the database table andeven the �eld(s) within that table to which the event (i.e. insert, delete, up-date) applies [1, 14]. The next example demonstrates this convention. Weinitially only de�ne the triggering events for our rules.Example 2 Assume that our ADBMS recognizes only data modi�cationevent types. Then our rule base may consist of rules triggered by an inser-tion, deletion, or update to the tables in the database. Table 3 summarizesour initial design sketch of three rules r1, r2, and r3 and their respectivetriggering event.In Table 3 we observe that whenever a user initiates an update to therank �eld in the emp table, rule r1 will be triggered. In a similar fashion,we may determine what triggers the other two rules. At this point, we haveonly determined what triggers each of our rules. In order to complete ourdesign, we need to consider the conditions and actions of these ECA rules.8
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EVENT TYPE EVENTData modi�cation insert, delete, updateData retrieval SQL select statementAbsolute time 12:00AMRelative time "4 hours after an update"Periodic time "each Tuesday at 8:00AM"Table 2: Events and their event type category.Rule triggering eventr1 ON update to emp(rank) . . .r2 ON update to bonus(raiseamnt) . . .r3 ON update to emp(salary) . . .Table 3: Three rules and the events that signal each.2.2.2 ConditionsThe event of a rule determines under which circumstances it is triggered.The next relevant portion of an ECA rule is its condition, which determineswhether or not the rule is actually activated. Formally, a rule conditionde�nes the state that a database must have in order for a rule to execute[12]. The condition may be expressed in two ways:� as a predicate written in the DBMS query language, such as SQL, thatreturns either TRUE or FALSE, or� as a database query that returns either EMPTY or NOT EMPTY.Starburst follows the �rst approach [1, 8, 21, 22]. We continue the design ofour rule base by specifying the conditions for the rules of Example 2.Example 3 Table 4 de�nes what state our simple database must have inorder for each rule to be activated (i.e. it de�nes ri's condition).Examination of Table 3 in conjunction with Table 4 shows that r1 is acti-vated whenever an employee's rank is updated, and that employee's new rankis less than 5. We may reason about rule r3 in a similar manner. The condi-tion for r2, on the other hand, always evaluates to TRUE. This simply meansthat whenever an update on bonus(rank) occurs, the rule is immediately ac-tivated [12, 22]. Such rules, where the rule's condition always evaluates to9



www.manaraa.com

Rule activating conditionr1 . . . IF new emp(rank)< 5 . . .r2 . . . IF TRUE . . .r3 . . . IF emp(salary)> $50; 000 . . .Table 4: Three rules and the conditions required for their activation.TRUE, are commonly referred to as event-action (EA) rules which are oftenused in practice [12, 19]. Therefore, many ADBMSs, including Starburst,allow a rule designer to optionally omit a rule's condition [21, 22].2.2.3 ActionsThe action of a rule is executed as a reaction to any triggering of a rule'sevent, when a rule's condition holds [1, 8, 12, 14, 21, 22]. Such actionsessentially characterize the \reactive" behavior of an ADBMS discussed inSubsection 1.3 [12]. Naturally, this is also what causes ADBMS behaviorto be so di�cult to predict [1, 21]. An action may consist of a data mod-i�cation operation, a data retrieval operation, a transaction operation (ie.COMMIT/ABORT), or a call to external procedures or methods [12]. Star-burst allows all of these to be de�ned as possible actions [1]. However, inour examples, we limit ourselves to using only data modi�cation and dataretrieval actions.Recall from Example 2 that the �rst action type (data modi�cation) alsoconstitutes an event type in Starburst. This means that the action of one rulemay automatically cause an event that triggers more rules. This cascadedtriggering of rules makes the prediction of rule behavior di�cult as soon asthe number of rules in the system grows large and raises serious challengeswhen attempting to design a sensible set of rules [1].Example 4 We complete our set of ECA rules by specifying what actionshould be taken when each rule is activated. Table 5 lists our rules and theirassociated actions.Table 6 allows a cascaded triggering of rules r1 ! r2 ! r3 as a chain reac-tion initiated by r1's action triggering r2, and r2's action, in turn, triggeringr3. In our example, the chain of events terminates at r3, since we do notconsider r3's action (i.e. data retrieval) to be a triggering event. However,such a small number of rules is uncommon and hides the unpredictability of10
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rule action performedr1 . . .THEN update bonus(raiseamnt)r2 . . .THEN update emp(salary)r3 . . .THEN retrieve emp(empid,name,salary,rank)Table 5: Three rules and the actions they perform if activated.Rule ECA de�nitionr1 ON update to emp(rank)IF new emp(rank) < 5THEN update bonus(raiseamnt)r2 ON update to bonus(raiseamnt)IF TRUETHEN update emp(salary)r3 ON update to emp(salary)IF emp(salary) > $50; 000THEN retrieve emp(empid,name,salary,rank)Table 6: Our complete set, R, of rules.such rule systems present in realistic examples. For more substantial cases itwill be next to impossible for a designer to construct an unambiguous set ofrules [1] without any proper tool support. The next example demonstratesone possible instance of what could go wrong if we are not careful whendesigning rules.Example 5 Suppose that we temporarily add two more rules to our currentset in Table 7.Clearly, an event triggering r4 or r5 would result in a cyclic execution ofRule ECA de�nitionr4 ON update to emp(salary)IF TRUETHEN update emp(rank)r5 ON update to emp(rank)IF TRUETHEN update emp(salary)Table 7: A non-terminating set of rules.11
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these two rules that would never terminate. In fact, these two rules wouldcause an employee's salary to increase inde�nitely! We can easily predict thisadverse behavior in our simple examples, but such design aws may remainundetected in a larger rule set with longer cycles.2.3 De�nition of ECA rulesThe syntax of ECA rules provides a generic framework for logically design-ing a rule base and reasoning about the behavior of the rules therein. Ta-ble 6, for instance, reects our corporation's policy to automatically giveincreased raises to promoted employees until they achieve a rank of �ve.From that point on, an employee should receive the same raise upon beingpromoted. The de�nition of new ECA rules must be possible either throughthe ADBMS's data de�nition language (DDL) or by adopting a new rule def-inition language (RDL) [12]. HiPAC and Starburst adopt such RDLs, and,although the syntax for de�ning new rules depends on the particular systembeing used, both languages provide constructs for de�ning various events,conditions, and actions [1, 14, 21, 22]. We adopt the notation of Starburst'sRDL [1, 21, 22]. The following is a fragment of the syntax for rule de�nitionin Starburst:create rule namewhen event[ if condition ]then actionRule de�nition in Starburst closely matches the general format of ECA rules.However, note that a rule's condition is optional. This optional facility allowsStarburst to de�ne EA rules. In our example, r2 has no condition (i.e. it isan EA rule), and, therefore, the condition is coded as "IF TRUE". Figures 1,2, and 3 show how to express our rules using Starburst's syntax. Reader'sfamiliar with SQL certainly notice the SQL-like characteristics of this state-ment. In fact, the conditions themselves are simply SQL predicates [22].For those unfamiliar with SQL, Table 8 describes in detail the meaning ofeach statement involved in the insertion of r1 (from Figure 1). Commandsto insert the other two rules are similar and are given in Figures 2 and 3. Aninformal explanation of these insertions is not provided, but may be obtainedby comparison with rule 1's explanation. Please observe that rule 2 has no12
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create rule rule 1 on empwhen updated(rank)if select empid e1 from new updated emp.rankwhere(select rank from new updatedemp.rank wherenew updated emp.rank > old up-dated emp.rankand new updated emp.rank < 5)then update bonusset raiseamnt = raiseamnt + 500where empid = e1.empidFigure 1: Command to insert rule 1 into Starburst rule base.condition since it is an EA rule. Also note that, in rule 3, the SQL query,\select * . . . ," retrieves all �elds from the speci�ed table.2.4 Execution ModelsThe �nal necessary ingredient of any active database management systemis its execution model [12]. For any ADBMS, its execution model describesthe manner in which rules are processed [12, 20, 22]. In general, this modelvaries widely among di�erent rule systems [20]. On the surface, this may seemproblematic for our proposed methodology of model checking ABDMSs. Yet,recall that, even though Starburst implements its own language for de�ningrules (its RDL), it still follows the generic ECA paradigm. Thus, it is possibleto isolate similarities among various execution models as long as they reston the ECA paradigm. We use Starburst as our illustratory case study of anactual execution model.2.4.1 Physical ADBMS ComponentsThe most obvious resemblance among di�erent execution models are thephysical components required for rule processing. Any ADBMS must have13
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STATEMENT MEANINGcreate . . . says rule 1 e�ects emp tablewhen . . . says this rule is signaled on an update of the rank �eldnew updated emp.rank refers to the emp table after the updateold updated emp.rank refers to the emp table before the updateif select . . . instruction to �nd all the updated tupleswhose new rank is less than 5 and,if the result is not empty, the condition holdsthen . . . says that if previous condition holds,then update the bonus tableset . . . where says that an update adds 500 to the raiseamnt ofthose tuples for which the previous condition holdsTable 8: Informal explanation of rule 1 de�nition.
create rule rule 2 on bonuswhen updated(raiseamnt)then update empset salary = salary + raiseamntwhere empid in (select empid fromnew updated emp.rank, old updated emp.rankwhere new updated emp.rank >old updated emp.rank)Figure 2: Command to insert rule 2 into Starburst rule base.

14
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create rule rule 3 on empwhen updated(salary)if exists (select * from new updated emp.salarywhere new updated emp.salary > old updated emp.salary andnew updated emp.salary > 50000 )then select * from new updated emp.salary wherenew updated emp.salary > old updated emp.salary andnew updated emp.salary > 50000Figure 3: Command to insert rule 3 into Starburst rule base.[12] an underlying DBMS, a facility to de�ne a set of rules, an event detector,a condition evaluator, and an action processor. Only the organization of thesecomponents varies over di�erent rule systems.2.4.2 Conict ResolutionIn addition to physical components, any ADBMS's execution model requiresan explicit conict resolution policy [12]. Since the occurrence of an eventmay trigger multiple rules, this policy describes how an ADBMS chooseswhich rule should be processed �rst [22]. There are three predominant strate-gies for conict resolution [22]: no ordering (i.e. non-deterministic selection),partial ordering, and total ordering (i.e. deterministic selection). Partial andtotal ordering can be enforced by assigning priorities to rules at the timeof rule creation. The full syntax for the creation of ECA rules in Starburstallows such enforcements and is given by:create rule namewhen event[ if condition ]then action[ precedes rule-list ][ follows rule-list ] 15
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create rule rule 1 on empwhen updated(rank)if select empid e1 from new updated emp.rankwhere(select rank from new updatedemp.rank wherenew updated emp.rank > old up-dated emp.rankand new updated emp.rank < 5)then update bonusset raiseamnt = raiseamnt + 500where empid = e1.empidprecedes frule 2gfollows frule 3gFigure 4: Command to insert rule 1 with priority info into a Starburst rule base.The optional syntactic categories precedes rule-list and follows rule-listcan be used to reect one rule's priority over another.Example 6 Recall our insertion of rule 1 from Figure 1. Suppose, instead,that we had inserted what is now shown in Figure 4. For the sake of discus-sion, assume that some set of events triggered r1, r2, and r3 at the same time.Before Starburst begins evaluating any rule, it must resolve this conict bychoosing one of the rules in a fashion consistent with its conict resolutionpolicy. Then r3 would be evaluated �rst, for all priority information is spec-i�ed in r1's de�nition (r2 and r3 remain as they appear in Figures 2 and 3).Thus, r1 precedes (i.e. has priority over) r2, but not r3. Hence, r3 is selectedand evaluated �rst. We should stress that conict resolution precedes rulecondition evaluation.As mentioned throughout this subsection, we wish to identify the similar-ities between di�erent rule systems. Although di�erent rule systems enforce16
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empid name salary rank1 Matt Shirley 50000 32 Jasmine Reick 65000 43 Darren King 45000 2Table 9: emp table containing three tuples.di�erent policies for resolving conicts, we make note of the fact that suchpolicies can be classi�ed to be either unordered, partially ordered, or totallyordered.2.4.3 Execution Semantics of StarburstWe have almost completed the construction of our concrete ADBMS. So far,we have created a small database containing employee information, designedthree ECA rules, translated those rules into Starburst syntax, and deter-mined Starburst's policy of resolving conicts. The only thing we have notyet de�ned is Starburst's execution semantics, which describes how all thesecomponents interact in order to process information [20]. Unlike the previousissues we have discussed, the execution semantics of a particular ADBMS isunique. This is what creates the real challenge inherent in analyzing rulesystems [20]. In Section 3, we tackle the issue of providing a generic frame-work modeling each ADBMS's unique execution semantics. Because of theuniqueness of each ADBMS's execution semantics, we rely on our runningexample for presenting a simulation of Starburst's execution semantics. Webegin with an initial transaction which triggers rules in our rule base. Wecontinue to follow the sequence of events that occur subsequent to this initialtransaction, pausing to discuss each step along the way.Example 7 The next few pages provide a detailed example of the execu-tional semantics of Starburst.We assume that some tuples already exist in our two database tables asshown in Tables 9 and 10. Also, we make this example more interestingby adding one more rule r4 to our rule base. The resulting set of rules issummarized in Table 11. Notice that r1 and r4 are signaled by the sameevent, but r4 has a higher priority as speci�ed in the precedes clause.Now, suppose Matt and Jasmine receive promotions and need to havetheir ranks in their company increased by one. We could perform this update17



www.manaraa.com

empid raiseamnt1 10002 15003 500Table 10: bonus table containing three tuples.
Rule ECA de�nitionr1 ON update to emp(rank)IF new emp(rank) < 5THEN update bonus(raiseamnt)r2 ON update to bonus(raiseamnt)IF TRUETHEN update emp(salary)r3 ON update to emp(salary)IF emp(salary) > $50000THEN retrieve emp(empid,name,salary,rank)r4 ON update to emp(rank)IF TRUETHEN retrieve emp(empid,name,salary,rank)PRECEDES fr1gTable 11: Rule Set used for example 7.

18



www.manaraa.com

using the following SQL command:update empset rank = rank + 1where empid = 1 or empid = 2.This update on emp(rank) produces an event triggering rules r1 andr4. Starburst adds these rules to the consideration set Rc which initiallyis empty. Thus, Rc = fr1; r4g. At any point during rule processing, theconsideration set contains all rules that have been triggered, but have notyet been evaluated [1]. If Rc is not empty the ADBMS \knows" that thereare some rules it must process (i.e. evaluate the condition of the chosen ruleand, if true, perform its action). Moreover, if Rc contains multiple elements,the ADBMS applies its conict resolution policy for choosing a rule from Rc.At this point, Starburst selects r4 for consideration and removes it fromRc. Consideration is simply Starburst's process of choosing a rule fromRc, evaluating its condition and, if true, executing its action [1]. Since r4'scondition holds vacuously, the system proceeds to execute the action, whichwas de�ned as a data retrieval transaction to display the current values of thetuples being updated. This action does not trigger any new rules. Table 12summarizes what has occurred up to this point. Although new rules werenot triggered, note that Rc still contains r1. Starburst realizes Rc is notempty and that it contains a sole rule. Thus, r1 is chosen for consideration;its condition also evaluates to TRUE, but for Matt only ! To see this, referback to Figure 1. The condition read as follows:(select rank from new updated emp.rank wherenew updated emp.rank > old updated emp.rankand new updated emp.rank < 5 )where old updated emp.rank contains our initial values (Table 9) but newupdated emp.rank contains what is shown in table 13. The implications ofr1's action are to increase Matt's raiseamnt (in the bonus table) by $500, butleave Jasmine's raiseamnt unchanged (since her rank equals 5). Furthermore,execution of this action triggers the rule r2 (see Table 14).Starburst proceeds to automatically process newly triggered rules in thesame fashion. In this manner r2 causes Matt's and Jasmine's salaries in theemp table to be increased by $1,500, and also triggers r3 which displays19
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transaction event triggers Rc considered rule condition actioninitial update fr1; r4g fr1; r4g r4 TRUE retriever4's action N/A N/A fr1g N/A N/A N/ATable 12: Summary of events following initial transaction and r4's action..
empid name salary rank1 Matt Shirley 50000 42 Jasmine Reick 65000 53 Darren King 45000 2Table 13: new updated emp.rank table.

transaction event triggers Rc considered rule condition actioninitial update fr1; r4g fr1; r4g r4 TRUE retriever4's action N/A N/A fr1g N/A N/A N/AN/A N/A N/A fr1g r1 TRUE updater1's action update fr2g fr2g N/A N/A N/ATable 14: Summary of events following initial transaction and r1's consideration..
20
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transaction event triggers Rc considered rule condition actioninitial update fr1; r4g fr1; r4g r4 TRUE retriever4's action N/A N/A fr1g N/A N/A N/AN/A N/A N/A fr1g r1 TRUE updater1's action update fr2g fr2g r2 TRUE updater2's action update fr3g fr3g r3 TRUE retriever3's action N/A N/A fg N/A N/A N/ATable 15: Complete summary of events following initial transaction.empid name salary rank1 Matt Shirley 51500 42 Jasmine Reick 66500 53 Darren King 45000 2Table 16: emp after completion of rule processing.the composite result of our initial update to the terminal. Thus, Matt's andJasmine's employee information will be displayed since their salaries are morethan $50,000. Thereafter, since Rc contains no more rules, rule processingterminates. Table 15 summarizes this entire process from start to �nish. Theresulting values of the emp table are shown in Tables 16 and 17.2.5 Previous E�orts to analyze ADBMS BehaviorHaving a clear description of this ADBMS and its operation, we can nowaddress the issues of modeling and Model Checking rule systems. Beforewe do that, we briey discuss previous e�orts at analyzing rule systems andassess the results that were obtained.Previous e�orts at predicting rule system behavior have been addressedin [1, 8, 21, 22]. These e�orts were directed speci�cally towards Starburst,but according to [1] can be modi�ed and applied to any rule system. In [3], aempid raiseamnt1 15002 15003 500Table 17: bonus table after completion of rule processing.21
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more general relational and algebraic approach was used. The bene�t of suchan approach is that it is not speci�c to Starburst; its major disadvantage,however, is that it can only be applied to rule systems built over DBMSsusing the relational model. In [3] one �nds algorithms for analyzing thefollowing three properties: termination of a set of rules, conuence of a setof rules, and observably deterministic behavior of a set of rules.Termination is a property which ensures that rule processing is guaranteedto terminate. In particular, one would like to ensure that rule execution doesnot continue in a cyclic manner [1] as noted in Example 5.A set of triggered rules is conuent if, the order in which rules underconsideration are being processed is immaterial to the �nal outcome [1].Assigning priorities to rules is the easiest means of achieving a conuentset of rules.A set of triggered rules is observably deterministic if, regardless of theorder in which non-prioritized rules are processed, any �nal observable out-come (caused, for instance, by a rule that displays information to the user'sterminal) will be the same [1].It is hardly surprising that attempts to analyze these properties havebeen somewhat inconclusive. In [1, 8, 12], it is suggested that it would notbe possible to construct an algorithm which can prove, in general, whetheror not these properties hold for a set of rules. In fact, these notions arein general undecidable. Therefore, our best hope is to provide su�cientconditions under which our model checking methodology which successfullyverify the properties above. If such model checks fail, we can only inferthat the given ADBMS may or may not enjoy the respective property. Sur-prisingly, no previous e�orts seem to have been directed towards analyzingmore speci�c properties of rule sets; for instance, checking if certain rule in-tegrity constraints, speci�ed in the pre-developmental design speci�cation ofan ADBMS, hold.Example 8 Reconsider our set of rules from previous examples. Our pri-mary goal was to design these rules to reect our corporation's policy ofgiving raises whenever an employee is promoted in rank. Thus, we certainlyexpect that our rules behave in a way such that an increase in an employee'srank always results in an increase to that employee's salary. We usually takefor granted that such properties holds. However, human error and unpre-dictable rule interaction can foil even the most meticulous design speci�ca-tion. In fact, it turns out that this property is not satis�ed in our simple22
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rule set! Such subtle errors can occur quite frequently in rule design. Thus,the problems inherent in designing a set of unambiguous rules are reminis-cent to problems occurring in the design and implementation of concurrenthardware and software. This makes model checking a natural candidate fora methodology of analyzing ADBMSs [16].3 Our Model of an ADBMSModel Checking ADBSMs means that our analysis of ADBMSs won't beapplied to actual ADBMSs, but to an abstract model of such systems. Ab-straction simpli�es our veri�cation e�orts by allowing us to omit details of areal ADBMS that do not e�ect the analysis of rule behavior [7]. In Subsec-tion 1.3 we pointed out that it is bene�cial to view an ADBMS as an opensystem, since decisions made by the environment, in which the ADBMS op-erates, could a�ect its behavior. Although we have not yet given any explicitexamples of such decisions, Section 2 suggests what some of these might be.The Example 9 below depicts a situation where decisions made by Starburst'senvironment a�ect its behavior.Example 9 Consider Example 7. The initial update triggered two rules r1and r4. Rule r4 was selected for consideration �rst, since it had a higher pri-ority. This scheduling decision made by Starburst's environment and basedon its conict resolution policy. An ADBMS operating under a di�erent en-vironment, e.g. one which enforced a di�erent conict resolution policy (seeSubsection 2.4.2), would, in general, behave di�erently.In this section, we present our model of an ADBMS. A motivating factorbehind the design of this model is its ability to represent an ADBMS inthe context of di�erent environments. Thus, although we apply our e�ortstoward modeling the Starburst rule system, it should become clear that anyrule system could be modeled under this framework. We begin with a formalde�nition of the model and proceed by examining each piece in greater detail.3.1 The ModelDe�nition 10 Formally, a model of ADBMS rule processing is a tuple,M = (R; C; S; r! ; tt! ; ff! ; L1; L2)23
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consisting of:� a set of rules R = R1+R2, where R1 is a set of ECA rules, and R2 isa set of EA rules.� a set of environment (controller) states C,� a set of system states S,� for each r 2 R, a binary relation, r! � C � S� two binary relations tt! and ff! , on S � C, and� two labeling functions L1 : Atoms ! P(C) and L2 : Atoms ! P(S)which map each propositional atom to the set of environment, respec-tively system states where that proposition is true.In addition, we demand that for each c 2 C, each s 2 S, and each r 2 R1, ifc r! s, then s has exactly one tt and one ff successor. Furthermore, wedemand that for each c 2 C, each s 2 S, and each r 2 R2, if c r! s, then shas exactly one tt successor and no ff successor.Figure 5 shows our model of Example 7. Note that the names inside nodesare state names and not propositional atoms true at such states. The latterwill be addressed in a later section. The initial state, c0, reects the stateof Starburst immediately after the initial update to Matt's and Jasmine'ssalaries. The collection of paths, beginning at c0, reect all the computationsthat could possibly occur during rule processing. The execution path thatStarburst actually selected in Example 7 is denoted by dashed lines. Alsonote that s0 and s2 only have a tt successor since r2 and r4 are EA rules.This model satis�es the requirement given in De�nition 10. We refer back tothis model throughout the remainder of this section. The reader familiar withordinary models for CTL will recognize that our models are based on CTLmodels which strictly alternate between system and environment capacities.As customary, the states of the model reect possible states of the ADBMSwe are modeling. For instance, an ADBMS may be in a state of computingwhat rules have been triggered by an event, or it may be in a state of eval-uating some rule's condition. Our binary relations describe the ADBMS'scapacity to move from one state to the next; e.g. such a transition couldresult when an ADBMS executes a rule's action. Finally, the labeling func-tions (omitted in our example) determine what atomic propositions are true24
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Figure 5: A model of Example 7 showing all the possiblebehavior of our ADBMS.
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state event table �eld(s) Rc priorityc0 update emp rank fr1; r4g r4 precedes r1Table 18: Con�guration of the environment in state c0.at each state. This allows one to represent states as bit vectors using e.g.the description language of SMV [15]. The logic EATL associated with suchmodels is presented in Section 4.Our notion of model allows us to distinguish between those decisions thatdepend on the particular ADBMS we are modeling (i.e. its environment), andthose which do not (i.e. its underlying system).3.2 The Interaction between Environment and SystemSection 2 provided us with a general idea of how interaction occurs betweenan ADBMS's environment and its system. For instance, at any point fol-lowing the initial event and preceding the termination of processing, the nexttransition of the ADBMS is determined as follows:� If the ADBMS is in some state cj 2 C and Rc is not empty at cj,then the ADBMS's environment must choose a rule ri for considera-tion based on cj's current con�guration. The ADBMS then makes atransition to some system state sj 2 S.� If the ADBMS is in some state sj 2 S then the system chooses whetherit executes ri's action or not (recall that ri was chosen above in state cj).This choice depends on how the system evaluates ri's condition. If ri isan EA rule this choice is deterministic and the system always executesits action. Regardless of what the system chooses, the ADBMS thenmakes a transition to some environment state cj+1 2 C.Example 11 Consider Example 7. Initially, we executed an update onMatt's and Jasmine's ranks in the emp table. In terms of our model, wecan imagine Starburst making a transition into environment state c0 whenthe initial event occurs. At this point, Starburst's environment must decidewhich rules are triggered by an update to emp(rank), which rules should beadded to Rc, and which rule should be selected for consideration.26
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state action table �eld(s)s0 retrieve emp empid,name,salary,rankTable 19: Con�guration of the system in state s0.state event table �eld(s) Rc priorityc0 update emp rank fr1; r4g r4 precedes r1c1 retrieve emp empid,name,salary,rank fr1g N/ATable 20: Con�guration of the environment in state c1.Table 18 shows the con�guration of Starburst's environment in state c0.Based on c0's con�guration, the environment determines thatRc is not emptyand chooses r4 for consideration (since r4 precedes r1). Upon considerationof r4, Starburst makes a transition into system state s0 (see Figure 5). Thesystem must now determine if r4's condition is TRUE, and if so, what actionshould be executed.Table 19 shows the con�guration of Starburst's system in state s0. Be-cause r4 is an EA rule, the only possible transition out of s0 is a tt transition.Thus, the system performs a retrieve on the emp table. Starburst makes atransition into state c1 and control reverts back to its environment. Table 20shows the con�guration of Starburst's environment in state c1. Notice thatalthough s0's action did not trigger any new rules, the environment still hasknowledge of its con�guration prior to entering c1 (i.e. c0's con�guration).This concurs with what would occur in the actual ADBMS.In state c1, the environment has to select r1 for consideration, and theADBMS enters system state s1. At this point, the system needs to determinewhether r1's condition is TRUE, and if so, what action should be executed.We chose to omit any representation of the database state in our model. Thisomission is the basis for an abstract interpretation of the actual ABDMS andmakes it possible to model rule processing in a �nite number of states. In ourexample this means that the system has absolutely no information about theconcrete values in tables emp and bonus. So how can the system determineif it should execute r1's action? We address this critical problem of modelingrule condition evaluation in Subsection 3.4. For now, we pretend that thesystem can obtain information from Starburst's database and evaluate eachrule's condition according to Example 7. Then, since r1's condition wasTRUE, the system executes an update on bonus(raiseamnt).27
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state event table �eld(s) Rc priorityc0 update emp rank fr1; r4g r4 precedes r1c1 retrieve emp empid,name,salary,rank fr1g N/Ac2 update bonus raiseamnt fr2g N/Ac3 update emp salary fr3g N/Ac4 retrieve emp empid,name,salary,rank f g N/ATable 21: Con�gurations of all environment states reached during rule processing.state action table �eld(s)s0 retrieve emp empid,name,salary,ranks1 update bonus raiseamnts2 update emp salarys3 retrieve emp empid,name,salary,rankTable 22: Con�gurations of all system states reached during rule processing.The interaction between the environment making decisions and the sys-tem reacting to those decisions continues until Starburst hopefully reaches astate where rule processing terminates (i.e. Rc becomes empty). Tables 21and 22 summarize this entire interactive process.A salient feature of this interaction is that it strictly alternates betweenchoices made by Starburst's environment and its system. In [2], Alur andothers suggest that this alternation can be thought of as a \game" of envi-ronment versus system, where each \agent" makes a move on its respectiveturn. Indeed, when Starburst's environment chooses a rule for consideration,it is up to the system to determine if that rule's action should be executed.Analyzing all the possible outcomes of this game helps us determine if theenvironment and system could interact in a manner inconsistent with thedesigner's intentions [2].3.3 The States of our ModelIn general, an ADBMS begins processing ECA rules in response to sometriggering event which is initiated by the user. From that point, up to thepoint where rule processing terminates, either the ADBMS's environment orits underlying system determine how rule processing is to proceed. Thus, atany time during rule processing, an ADBMS is either in some environment28
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state, c 2 C, or some system state, s 2 S. Initially, the ADBMS is inenvironment state c0.From Subsection 2.4, we know that the manner in which ECA rules areprocessed under Starburst is, in part, determined by its execution model.Furthermore, we discovered that di�erent ADBMSs often have di�erent ex-ecution models. Therefore, we can conclude that it is the execution modelwhich de�nes how a particular ADBMS behaves. The next example illustrateshow Starburst's execution model de�nes its environment.Example 12 Recall Examples 7 and 11. Our initial command updatedMatt's and Jasmine's salaries. In terms of Figure 5, we can imagine Starburstentering state c0. At this point, Starburst's environment determined that r1and r4 should be triggered, r1 and r4 should be added to Rc, and r4 shouldbe considered before r1.All of these decisions reect some aspect of Starburst's execution model.For instance, 1) reects the event types which Starburst's event detectorrecognizes; 2) reects Starburst's execution semantics; and 3) reects Star-burst's conict resolution policy. Hence, during rule processing, we de�ne anADBMS to be in an environment state, c 2 C, whenever it is computing therules that are triggered by an event, the set of rules eligible for evaluationand possible execution (i.e. Rc), and the rule to be selected for consideration.Similarly, we de�ne an ADBMS to be in a system state, s 2 S, whenever arule is already under consideration, and an action is ready for execution.Of course, the ability to compute these results presumes that each statein our model is enriched with information about rules in the ADBMS's rulebase. Section 5 gives some examples of how we might encode this informa-tion into states. For now, we assume that, at each state, the ADBMS mayobtain any rule information necessary to perform its computations. Clearly,whenever the system must evaluate a considered ECA rule, it considers twopossibilities: executing the rule and not executing the rule. Later on we willsee that our veri�cation framework accounts for that by doing a conservativeow analysis.3.4 The Transition Relations of our ModelSubsection 3.2 informally described the interaction between an ADBMS'senvironment and its underlying system. In this subsection we wish to for-malize and generalize these notions. The binary relation r! is de�ned for29
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each r 2 R. We write c ri! s to express that it is possible for the ADBMSto reach state s from state c by considering rule ri. The following exampleillustrates such state transitions.Example 13 Consider the �rst transition, c0 to s0, described in Example 11and illustrated in Figure 5. The transition was made upon the environmentchoosing r4 for consideration at c0. Formally, we would express this transitionin our model as: c0 r4! s0.Example 11 is somewhat unrealistic because at every state, ci 2 C, onlyone rule is eligible for consideration. This does not allow us to demonstratethe true power of our model. Our next example presents a more complicatedsituation.Example 14 Consider Example 11 again, but this time, let's assume that r1and r4 have the same priority. Then, at state c0, the environment must non-deterministically select which rule should be considered �rst. Hence, thereare two possible transitions out of state c0: c0 r4! s0 and c0 r1! s00. Figure 6shows how we would represent this graphically. The model is quite large anddemonstrates how non-determinism can drastically increase the state space.We should point out, however, that, as in Figure 5, the paths in this modelall terminate eventually.The power to express this non-deterministic choice in our model is essen-tial to realizing reliable results during veri�cation. We may also apply non-determinism in order to abstract certain details of the actual system [10]. It isthis application of non-determinism that allows us to simulate the evaluationof an ECA rule's condition at system states; a topic which was previouslyignored in Subsection 3.2.The two binary relations, tt! and ff! , allow us to e�ectively abstract alldetails about the ADBMS's database. We know from Section 3.2 that whenour ADBMS is in some state s 2 S, the system may choose either to executeor not execute an ECA rule's action. Therefore, we write s tt! c to expressthat it is possible for an ADBMS to reach state c from state s by executingrule ri's action. We write s ff! c to express that it is possible for an ADBMSto reach state c from state s when ri's action is not executed (i.e. if ri is anECA rule).Example 15 Consider again the transition from s1 to c2 given in Example 11and illustrated in Figure 5, but this time suppose we do not know that r1's30
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state event table �eld(s) Rc priorityc0 update emp rank fr1; r4g r4 precedes r1c1 retrieve emp empid,name,salary,rank fr1g N/Ac2 update bonus raiseamnt fr2g N/Ac02 N/A N/A N/A f g N/Ac3 update emp salary fr3g N/Ac4 retrieve emp empid,name,salary,rank f g N/Ac04 N/A N/A N/A f g N/ATable 23: Con�gurations of all the environment states for Figure 5.condition must evaluate to true. Then there are two transitions out of states1: s1 tt! c2 and s1 ff! c02. On the other hand, for any EA rule r 2 R2under consideration at state s 2 S, we have exactly one tt successor and noff successor. For example, at state s0, the EA rule r4 is under consideration.Notice that in Figures 5 and 6 there are various paths along which ruleprocessing may proceed. Each of these alternatives represents a unique com-putation path of the ADBMS. Formally, a computation path of M is asequence of states � = c0; s0; c1; s1; : : : ; cj; sj; : : :, such that cj ri! sj, and(sj tt! cj+1 or sj ff! cj+1).Example 16 Consider Examples 14 and 15. One possible computation pathis � = c0; s0; c1; s1; c2 : : : . Another, di�erent possibility is �0 = c0; s0; c1; s1; c02.In order to understand a model in its entirety, it is useful to accountfor information computed and stored at each state. Table 23 shows thecon�guration of each environment state depicted in Figure 5. Technically,this information could be provided by labeling states with appropriate atomicpropositions. Notice that at any environment state where Rc is empty (suchas c4), there are no edges out of that state's node. This indicates that ruleprocessing terminates in such states. The con�guration of the system statesis the same as in Table 22.
31
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Figure 6: A complete model of example 14.3.5 Labeling Models with PropositionsAs rule processing proceeds in a rule system, we expect certain atomic propo-sitions to be true when the ADBMS is in a certain state. For instance, inFigure 5, it may be useful to know that state c0 \is triggered by an updateaction", or state s0 \can execute a retrieve action". We can apply theseatomic propositions towards constructing formulas which specify propertieswe desire to hold in our rule system. Indeed, the primary objective of ModelChecking is to verify automatically that what we desire to be true about amodel actually be true.In our model, we view an ADBMS as a cooperative of environment andsystem. Thus, we expect certain propositions to hold at each environmentstate, and certain, di�erent propositions to hold for the system. This viewis facilitated by the existence of two labeling functions in our model: L1and L2. It is not problematic that atoms for both the environment andsystem come from the same set, since our labeling functions e�ectively handlesuch a distinction. In fact, we could check if the proposition \can execute aretrieve action" is TRUE at some environment state, but such a check alwaysreturns a FALSE answer. Such consistencies will be implicitly guaranteed bya program which describes the model (e.g. a program written in SMV orSpin). 32
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4 Event-Action Temporal LogicCertainly, as ADBMS designers, we would write a formal speci�cation de�n-ing the requirements we expect our rule system to meet. Example 8, forinstance, suggests a rule behavior constraint we want to enforce in our rulesystem. This constraint speci�ed that, if an employee's rank is updated, theirsalary should ultimately be updated automatically. Thus, our speci�cationshould require that, no matter how rules are processed, this constraint holds.Model Checking, or any other formal veri�cation method, should then ensureour rule system's correctness with respect to this speci�cation [11, 17]. Sincewe wish to reason about ADBMS rule processing, we o�er a speci�cationlanguage that reects the interaction that occurs as a result of the sequenceof decisions, made in an alternating fashion, by the ADBMS's environmentand its system. We present the syntax and semantics of Event-Action Tem-poral Logic (EATL), a branching-time temporal logic based on CTL (whichmodels closed systems) [2]. We can use EATL to describe the behavior weexpect an ADBMS to exhibit during rule processing. As before, we applyEATL towards checking properties pertaining to our Starburst rule system(and gain some surprising insights!).4.1 Syntax of EATLIn Section 3, we modeled rule processing as a series of decisions, made inan alternating fashion, between the environment and system of an ADBMS.More precisely, Sr2R r! captures all possible decisions made by the ADBMS'senvironment which take the ADBMS from an environment state to a systemstate. Likewise, tt![ ff! represents all possible actions taken by the ADBMS'sunderlying system which move the ADBMS back to an environment state.For this reason, the logic EATL (an action-based, alternating CTL) is com-prised of two distinct but interdependent sub-logics: EATLC and EATLS.Their interdependence allows us reason about the interaction between envi-ronment and system.De�nition 17 Given a set of propositional atoms Atoms, two sets of propo-sitional variables, Var1 and Var2, a set of ECA rules R = R1+R2, we let Krange over subsets ofR and de�ne EATLC formulas  and EATLS formulas� as: 33
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 ::= x j ff j p j : j  1 ^  2 j [K]� j hKi� j �x: � ::= y j ff j p j :� j �1 ^ �2 j (tt) j (ff) j �x:�:where x 2 Var1 and y 2 Var2.As usual, we may derive the logical operators _ and ) for both EATLCand EATLS. Moreover, we de�ne �x: by :�x:: [:x=x] and �x:� by:�x::�[:x=x], where [:x=x] is the substitution of :x for free occurrences ofx in its argument. The meanings of the modalities hKi and [K] are based onthe standard semantics for the modal mu-calculus; we use h�i as a shorthandfor expressing hRi as in [5].Example 18 Let us reconsider the model in Figure 6. Suppose the EATLCformula  = [�]� is true at environment state c0. Then this formula statesthat for all possible transitions out of c0, which take place following theconsideration of a rule in Rc (c0 r1! s0 and c0 r4! s00 in this case), the EATLSformula � is true at all the next system states (s0 and s00). Suppose, instead,the formula  = [R2]� were true at state c0. Then this formula states thatfor all possible transitions out of c0, which take place following considerationof an EA rule in R2 (c0 r4! s00), the EATLS formula  is true at all thenext system states (at s00). The EATLC formula  = h�i� has a similarmeaning, but is less restrictive. The formula  = h�i� is true at state c0 ifconsideration of at least one rule in Rc causes the ADBMS to enter a systemstate where � is true (s0 or s00).Example 18 shows how the modalities of EATLC can be used to expressthe usual branching-time temporal properties of CTL imposed on an envi-ronment state. In a similar fashion, the modal operators de�ned for EATLSare used to express properties that, depending on how a Starburst systemevaluates a rule's condition, should hold at the subsequent environment state.Example 19 Consider again the model in Figure 6 and suppose the EATLSformula � = (tt) is true at state s0 Then, this formula states that, ifStarburst's system executes r1's action,  is true at state c1. Similarly, if theformula � = (ff) were true at state s0, then  would be true at state c01.Of course, one can now write speci�cations which hide intermediate sys-tem or environment states. We will return to this point later.34
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4.2 Semantics of EATLThe semantics of EATL formulas over our notion of models is the obviousadaptation of the standard semantics for the corresponding fragment of themodal mu-calculus [5].De�nition 20 Given a model M = (R; C; S; r! ; tt! ; ff! ; L1; L2) ofADBMS rule processing, a valuation � =< �1; �2 >:< Var1 7! 2C; Var2 7!2S >, and some  2 EATLC , we denote the set of states where  is truewith respect to � by [[ ]]c�. We de�ne [[ ]]c� inductively as follows:1. [[x]]c� = �1(x)2. [[p]]c� = fc 2 C j c 2 L1(p)g, for each p 2 Atoms3. [[ ff ]]c� = fg4. [[: ]]c� = C � [[ ]]c�5. [[ 1 ^  2]]c� = [[ 1]]c� \ [[ 2]]c�6. [[[K]�]]c� = fc 2 C j 8s 2 S ; 8r 2 K : c r! s implies s 2 [[�]]s�g7. [[hKi�]]c� = fc 2 C j 9s 2 S ; 9r 2 K : c r! s and s 2 [[�]]s�g8. [[�x: ]]c� = TfA � C j [[ ]]c�[x7!A] � Ag, where �[x 7! A] is the valuation�0 which agrees with � on all y except that �0(x) = A.For any � 2 EATLS, we denote the set of states where � is true withrespect to � by [[�]]s�. We de�ne [[�]]s� inductively as follows:1. [[x]]s� = �2(x)2. [[p]]s� = fs 2 C j s 2 L2(p)g, for each p 2 Atoms3. [[ ff ]]s� = fg4. [[:�]]s� = S � [[�]]s�5. [[�1 ^ �2]]s� = [[�1]]s� \ [[�2]]s�6. [[(tt) ]]s� = fs 2 S j 9c 2 C s tt! c and c 2 [[ ]]c�g35



www.manaraa.com

7. [[(ff) ]]s� = fs 2 S j8c 2 C s ff! c implies c 2 [[ ]]c�g8. [[�x:�]]s� = TfA � Sj[[�]]s�[x7!A] � Ag, where �[x 7! A] is the valuation�0 which agrees with � at all y except that �0(x) = A.Theorem 1 The semantics of EATL is well-de�ned since all operators havea monotone meaning except :; which is anti-tone.The proof of this in a mere adaptation of the corresponding fact for themodal mu-calculus. It should be clear that this semantics gives rise to ageneralization of the model checking algorithms which are based on labelingstates with subformulas of a given speci�cation [15].Convention 21 Given a model M = (R; C; S; r! ; tt! ; ff! ; L1; L2) ofADBMS rule processing, a valuation �, and an EATLC or EATLS formula,we de�ne M, c j=�  (read \c satis�es  in M w.r.t. �") by c 2 [[ ]]c� andM, s j=� � (read \s satis�es � in M w.r.t. �") by s 2 [[�]]s�.In the next example, we demonstrate the usefulness of EATL by checkinga few simple properties for the model depicted in Figure 5.Example 22 Refer back to Tables 21 and 22 which show the con�gurationsof the states for the model in Figure 5. We can use this information to de�nea number of atomic propositions. Suppose Atoms includes the following fouratomic propositions:� p1=is triggered by an update event,� p2=is triggered by a retrieve event,� p3=can execute an update action, and� p4=can execute a retrieve action.Of course, Tables 21 and 22 provides much more information, and each atomicdescription is a suitable candidate for an additional atomic proposition. Someof the checks we can make are listed below.� c0 j= p1 holds since, according to Table 21, c0 is in L1 (is triggeredby an update event). 36
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� s0 j= p4 holds since, according to Table 22, s0 is in L2 (can executea retrieve action).� c0 j= p1 ^ [r4]p4 holds since c0 j= p1, s0 j= p4, and since c0 r4! s0 isthe only possible r4 transition out of c0.� s0 j= p4 ^ (tt):p2 holds since s0 j= p4, c1 6j= p2, and there is atransition s0 tt! c1.4.3 Branching-Time Operations in EATLIn Subsection 1.3, we mentioned that one limitation of using ComputationTree Logic (CTL) for analyzing ADBMS rule processing was its natural re-striction to closed systems [2]. Nevertheless, the ability to write branching-time properties gives CTL much expressive power [10] which can be putto actual use since several software tools for model checking CTL, such asthe Symbolic Model Veri�er (SMV) [15], have been developed. SMV is aModel Checking tool which uses e�cient data structures and algorithms [6]for checking CTL formulas over models of �nite-state systems [10, 15] and adescription language for models and speci�cations [10] . Alas, we will shortlysee why SMV cannot be practically applied towards modeling ADBMS ruleprocessing.4.3.1 Expressing Branching-Time PropertiesWe examine in detail only the branching-time operations for EATLCwhichare suitable abstractions of those for CTL. We adopt a CTL-like notation:� c0 j= AGc  i� for all computation paths � = c0; s0; c1; s1; : : : we haveci j=  for all ci along that path.� c0 j= EGc  i� there exists a computation path � = c0; s0; c1; s1; : : :such that we have ci j=  for all ci along that path� c0 j= AFc  i� for all computation paths � = c0; s0; c1; s1; : : : we haveci j=  for some ci along that path.� c0 j= EFc  i� there exists a computation path � = c0; s0; c1; s1; : : :such that ci j=  for some ci along that path.37
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� c0 j= Ac( 1 U  2) i� for all computation paths � = c0; s0; c1; s1; : : : wehave ci j=  2 for some ci along that path, and for each j < i, cj j=  1.� c0 j= Ec( 1 U  2) i� there exists a computation path � = c0; s0; c1; s1; : : :such that ci j=  2 for some ci along that path, and for each j < i,cj j=  1.4.3.2 Expressing AGc and EGcIn [7], it is shown that EG in CTL can be characterized as the greatest�xed point of the equation: EG = �x: ^ h�ix. This results in a labelingalgorithm computing the set of states which satisfy EG [15]: 1) Assumethat each state satisfying  has been assigned the label  ; 2) Assign all stateswhich are labeled with  the label EG ; 3) Repeat until no change: Removethe label EG from a state if it has no successors labeled EG .We can express EGc  in EATLC in the same fashion. The only interest-ing question is what are suitable notions of next states in our model. Since anADBMS alternates between environment and system states, the next stateof some environment state c is actually a system state s. However, fromthe environments point of view this system state s will determine the nextenvironment state c0. Our adapted CTL operators think of the sequencec ! s ! c0 as a single transition c ! c0 by hiding the interaction with thesystem. This opens up several interpretations of hiding. We chose the mostsensible, conservative one, which treats the hidden activity as demonic non-determinism (if some interaction with the system causes the speci�cation tofail, then our model check will fail).Demonic non-determinism is only one possible and extreme interpretationof \possible next environment states". Complete abstraction of data of theunderlying DBMS is the corresponding extreme on the date side. Obviously,there is a range of abstract interpretations of these notion and their actualchoice would depend on the concrete ADBMS and the abstract interpreta-tions performed on data in the underlying DBMS. One could begin testingwith this extreme case and if veri�cation fails one would make the interpre-tations more concrete until the veri�cation succeeds or an actual design awhas been found.Example 23 Recall that EGc  requires  to hold at every state on at leastone computation path. Now suppose c j= EGc  holds. Then by de�nitionwe require that  holds at c and EGc  hold at one of its possible environment38
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successors. Clearly, this requirement would be satis�ed if for some systemstate s, where c r! s for some r 2 R, the EATLS formula:� � = (tt) holds at state s, if r 2 R2, or� � = (tt) _ (ff) holds at state s, if r 2 R1.Thus, using what we know about EG in CTL, we arrive at the followingequation: EGc  = �x: ^ [hR1i((tt)x _ (ff)x) _ hR2i((tt)x)]:We can iteratively compute this set in a fashion similar to EG in CTL: 1)Assume that each environment state c, satisfying  , has been assigned thelabel  ; 2) Assign all environment states in C which satisfy  the label EGc  ;3) Repeat until no change: Remove the label EGc  from an environmentstate if none of its system successors' successors are labeled  .For all practical purposes, this algorithm works just like the associatedalgorithm for computing EG in CTL. However, since our model of ruleprocessing alternates between environment and system states, we must ref-erence an environment state's system state successor in order to examine(and possibly remove) the label at the next environment state. Additionally,the branching time mode at system states depends on whether it stems froman EA or an ECA rule. It should now be apparent that the time complexityof such algorithms will be quadratic in the number of environment states.Next, we examine AGc  , which is similar to EGc  , except that it requires to hold at every state along all possible computation paths. We expressthis operation with the following equation:AGc  = �x: ^ [[R1]((tt)x ^ (ff)x) ^ [R2]((tt)x)]:Notice how this equation is much more restrictive that EGc  , but similarin structure; we only negated the notion of \there exists a next environmentstate". Figure 8 illustrates a model whose initial environment state satis�esAGc  . Certainly, this operation is quite important for checking propertieswe demand to hold throughout rule processing.
39
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4.3.3 Expressing AFc and EFcWhereas AGc and EGc are used to check \invariant" properties that holdat every environment state along all or some paths, the branching-time op-erators AFc and EFc are used to check properties that we don't expect tohold for all states along a computation path, but do expect to hold even-tually; perhaps only after a certain situation arises. Unlike the previoustwo branching-time operations, AFc and EFc are characterized as least �xedpoints [15]. Again, AFc  expresses a more stringent property than EFc  .Consider the following �xed point characterization of EFc  :EFc  = �x: _ [hR1i(tt)x _ (ff)x) _ hR2i((tt)x)]:Like EF in CTL, the set of states satisfying EFc  can be determinedby the following algorithm [15]: 1) Assume that each environment state,c, satisfying  , has been assigned the label  ; 2) For all states labeled  in step 1, assign these states the label EFc  ; 3) Repeat until no change:Assign (i.e. add) the label EFc  to any environment state if at least one ofits system successors' successors are labeled  .This labeling activity is characterized as a least �xed point: we iteratethe labeling process beginning with no initial labels. The formula AFc  isshown in the following equation:AFc  = �x: _ [[R1]((tt)x ^ (ff)x) ^ [R2]((tt)x)]:By modifying step 3 of the algorithm for computing EFc  , we can com-pute the set of states satisfying AFc  . Step 3 would be changed so thatwe add the label  to an environment state only if all system successors'successors are labeled  . Figures 9 and 10 illustrate models whose initialenvironment states satisfy EFc  and AFc  respectively.4.3.4 Expressing AUc and EUcOften we need to express that some property  1 should hold until rule pro-cessing reaches a point where another property  2 is satis�ed. The branching-time operation Ec( 1 U  2) speci�es that, for at least one computation path, 1 holds at the current state, and continues to hold, until rule processingreaches a state where  2 holds. We characterize this formula with the fol-lowing equation: 41
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properties could not be decided in the general case (i.e. without abstrac-tions) [1, 8, 12]. In the next example, we demonstrate how we can specifytermination in EATLC .Example 24 Recall from Table 21 that, at each environment state, the con-�guration at that state includes the current status of the set Rc. Moreover,we explained that whenever Rc is empty at an environment state, it meansrule processing has terminated. Therefore, the EATLC formula term � AFc (consideration set is empty)speci�es that rule processing is guaranteed to terminate, for it expresses that\for all computation paths beginning in some environment state c there issome future environment state, where the consideration set is empty.".In our model from Figure 5 we have c0 j=  term since all paths eventuallyterminate.As suggested in [1] the properties of conuence and observable determin-ism are quite di�cult to establish. In fact, analyzing these properties requiresa number of steps. In the next section, we examine a possible model check-ing scheme for handling these properties. For now we focus on specifyingdeterministic ordering of actions. The following example demonstrates howwe may apply EATLS to determine if it is possible for two di�erent actionsto execute in di�erent orders.Example 25 Given atomic propositionsp1 = can execute update on emp(salary)p2 = can execute a retrieve on emp(salary)we consider the EATLS formula�ord � :(EFs (p1 ^ EFs (p2)) ^ (EFs (p2 ^ EFs (p1))).If there exists any state s 2 S such that s 6j= �ord our rule set may nothave deterministic ordering with respect to the actions speci�ed by p1 andp2. Otherwise, if s j= �ord then there cannot be two execution paths �1 =: : : ; s1; : : : ; s2; : : : and �2 = : : : ; s01; : : : ; s02; : : : where s1 j= p1 and s2 j= p2,and s01 j= p2 and s02 j= p1. If there did exist two such execution paths,then, depending on how rules are processed, we may either see 1) the value45



www.manaraa.com

of emp(salary) before it is updated, or, 2) the value of emp(salary) after itis updated. Certainly, the result of each computation path could be di�erent.However, it may also be the case that one of these executions is impossible orunlikely to occur during rule processing. This determination must be madeinteractively by the rule designer. In any case, the validity of s j= �ordensures deterministic ordering with respect to propositions p1 and p2.Example 25 also suggests an interesting aspect of EATL. Although wechose to analyze deterministic ordering in the context of EATLS, the mutualrecursiveness of EATL allows us to express the same property written inEATLC . The formula  � [�]� could also be used to check for deterministicorderings but at the level of the environment; in addition it provides moreexibility. For instance, if we modify the formula above slightly, we couldwrite  � [K]�, where K � R, in order to check this property for a subsetof our rule set. This allows for more �ne-grained and calculated analyzes.Finally, we show how we might use EATL for checking certain rule be-havior constraints we wish to enforce, such as the one given in Example 8.Example 26 In Example 8, we stated that we were interested in showingthat our rules behave in a manner such that, whenever an employee's rankis updated, then that employee's salary is also updated. Recall Figure 5,which depicts a model of rule processing that begins with an update to twoemployees' ranks. Then the EATLC formulaleadsto(r1; r3) � AGc (rule 1 is selected for consideration)AFc (rule 3 is selected for consideration))mnemonically reads as \At any environment state, if rule 1 is selected forconsideration, then eventually rule r3 is chosen for consideration.".Unfortunately, the check c0 j= leadsto(r1; r3) fails in the model of Fig-ure 5. As a counterexample consider the path c0; s0; c1; s1; c02. Notice that r1is selected for consideration by Starburst's environment in state c0. However,processing may terminate in state c02 without ever considering r3. Indeed, wehave uncovered a subtle error in our rule design. If we refer back to the orig-inal rule de�nitions given in Section 2, we notice that an employee's salaryonly gets updated if their new rank is less than �ve or if their rank is up-dated at the same time as another employee's whose new rank is less than�ve. Thus, in Example 7, Jasmine was lucky to have her rank updated at thesame time as Matt's! In order to correct this problem, we need to modify our46
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Rule ECA de�nitionr1 ON update to emp(rank)IF new emp(rank) < 5THEN update bonus(raiseamnt)PRECEDES fr5gr3 ON update to emp(salary)IF emp(salary) > $50000THEN retrieve emp(empid,name,salary,rank)r4 ON update to emp(rank)IF TRUETHEN retrieve emp(empid,name,salary,rank)PRECEDES fr1; r5gr5 ON update to emp(rank)IF TRUETHEN update emp(salary)Table 26: Corrected rule set used for our corporation's rule system.rule set. A correct set of rules is given in Table 26. Notice that r2 has beenremoved and replaced by r5. Now an employee's salary is updated when-ever their rank is updated. As with Figure 5, Figure 13 shows the model ofrule processing for this set of rules (again, the initial event is an update toemp(rank)). Now, c0 satis�es the rule behavior constraint given in Exam-ple 26. Although we discovered and corrected this error without automaticveri�cation, it should be clear that, generally, this becomes impossible formore realistic examples.5 ADBMS Model CheckingSo far we have outlined all the necessary components for a veri�cation toolcapable of checking EATL formulas in our framework. However, growthin the popularity of Model Checking over the past decade has already ledto the development of a number of formal veri�cation tools. Thus, ratherthan constructing a new model checker, it seems advisable to implementour framework in an existing veri�cation tool. For example, it should berelatively straightforward to implement the veri�cation of EATL formulasin MOCHA [2] as soon as that tool has been built. Since SMV did notperform well in our setting, we turned to Spin, a veri�cation tool developed47
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Figure 13: A complete model of our corrected rule set.
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at Bell Laboratories [4]. The reader familiar with Spin surely realizes thatits speci�cation language LTL is a linear-time temporal logic and is thereforenot suited for implementing EATL. Luckily, a variety of key properties,like termination and responsiveness, lie in the intersection of branching- andlinear-time logics. Thus, we can employ Spin for those properties.Spin provides its own description language, Promela, which speci�es ab-stract models of systems. In this section, we show how the model of ruleprocessing described in Section 3 can be written in Promela and analyzed bySpin. Speci�cally, we write a Promela speci�cation for our running examplefrom Section 2. Then, we show how Spin can be applied towards analyzingthose properties of rule behavior important to ADBMS designers (see Sub-section 2.5). In addition, we have developed a small, interactive environmentfor automatically generating Promela models of rule processing for di�erentrule sets. This simple GUI application, written in Java, allows a user tode�ne a set of rules and verify properties such as termination, deterministicordering, and rule integrity constraints. Moreover, the user may modify therule set by interactively adding and deleting rules, and save this rule set forfuture analysis. Our application generates Starburst rule processing models,but could be customized to generate Promela models reecting the executionsemantics of another rule system.Furthermore, the interface itself can be used as a front end for generat-ing rule processing models implemented with another Model Checking tool.For example, we tried to model and analyze rule processing using SMV [15].SMV represents the state space of a model symbolically using boolean decisiondiagrams (BDDs) [6, 15] allowing for extremely compact representations ofsystems. In spite of all this, SMV did not perform well when applied towardsmodeling and analyzing of rule behavior. One reason for this was SMV's de-scription language (see [15]), which did not allow us to easily model certainaspects of rule behavior, such as non-deterministic selection of rules for con-sideration. More speci�cally, SMV's description language, unlike Promela,has only a deterministic case-statement. Another factor might be the factthat SMV uses a state-based framework. Such a framework made it di�cultto naturally model the interaction between an ADBMS's environment andsystem. In the end, even our simple four rule example could not be e�cientlymodeled and analyzed with SMV. Taking e�ciency aside, we were able toautomatically generate SMV models of Starburst rule processing under ourinterface. This suggests that it is possible to construct a single interface un-der which a variety of ADBMSs can be modeled using a variety of di�erent49
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modeling languages. The implementation details of our application are be-yond the scope of this paper. Our motivation for building this tool was to,hopefully, corroborate the practicality of Model Checking in the context ofADBMSs.5.1 ADBMS Model Checking EnvironmentWe begin with an overview of our proposed interactive ADBMSModel Check-ing environment. Figure 14 illustrates a high-level architectural descriptionof our approach. The boxes in this �gure represent functional components ofthe Model Checking environment, and arrows represent interaction betweencomponents. Components within the dashed box belong to or are imple-mented by the Model Checking application itself. In our case, this will beSpin, but it could easily be a di�erent Model Checking tool (for instance, atool custom built for Model Checking EATL formulas) capable of providingthe functionality necessary to implement our framework. The user interfaceis not part of the Model Checking system, but o�ers its users a convenientway of interacting with it. For example, our Java GUI takes rule informa-tion and speci�cations provided by the user and produces a Starburst ruleprocessing model speci�ed in Promela. Finally, the Model Checking systemmust convey meaningful results back to the user. Spin's countertrace facility,which produces a graphical counterexample whenever a property is not sat-is�ed, is an excellent example of this type of information useful for analyzingrule behavior. Of course, Spin will return only one possible countertraceso the designer has to express the \essence" of that failure as a �lter (aformula of the speci�cation logic) which weeds out unrealistic computationpaths and required to verify the model anew. Thus, debugging can be seenas an incremental testing scheme.At this point, let us focus on the functional components within the ModelChecking system, which include: rule information, environment routines(simulating the environment states of our ADBMS), system routines (to sim-ulate the system states of our concrete ADBMS), and the Spin tool. The�rst three items are implemented by our Promela programs. We discuss thisencoding as well as the purpose of each component by means of our runningexample (the complete Promela speci�cation for Example 7, produced byour Promela code generator, can be found in Appendix A). Then, we mustsupply Spin with information about the properties we wish to analyze; thosecan be expressed directly in our Promela program. Ultimately, Spin takes50
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Figure 14: High-level view of our ADBMS Model Checkingenvironment.the Promela speci�cation of our rule processing model and produces a Cprogram which, when executed, veri�es whether the properties we desire tocheck hold in this model. In many respects, Promela's syntax is somewhatreminiscent of C. Consequently, this section assumes the reader has somefamiliarity or intuitive understanding of C, Spin, and Promela. A more de-tailed explanation of Spin and Promela can be found at the Spin website[4].5.2 Representation of Rules, States, and TransitionsIn many respects, Promela provides much of the exibility and power of anyordinary programming language. For instance, Promela provides syntacticconstructs for declaring structures (such as records and arrays), global and lo-cal variables (with the usual scoping rules), and processes (which can examineand modify variables). In addition, Promela provides a mechanism for de�n-ing message passing channels, which enables synchronous or asynchronouscommunication between two processes. Each of these constructs plays an in-tegral part in implementing our rule processing framework. In particular, weuse these constructs to de�ne representations for our model's ECA rules (in-cluding the events, tables, and �elds which make up these rules), environmentand system states, environment and system state transitions, consideration51
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set, and initial rule triggering transactions. The global variable declarationsfor the Promela speci�cation of Example 7 are illustrated in Figure 15. Weexamine the purpose of these variables in the following subsections.5.3 Rule InformationAs indicated in Figure 15, we can use the typedef construct to de�ne arecord ecarule which stores a variety of information about each of our fourECA rules. The �rst three �elds of this record store the event (plus theassociated table and �eld) that cause the rule to be triggered. The fourth,�fth, and sixth �elds keep the rule's action (including its associated tableand �eld) that takes place if Starburst's system chooses to execute the rule.Of course, an EA rule should always be executed. Hence we keep a variablertype in our ecarule structure which indicates whether a particular ruleis an EA or ECA rule. Finally, we de�ne an array of these records, rules,which enables us to directly access each instance of our four rules whenevernecessary. The rules array is set to size N, where N is a constant indicatingthe number of rules we are modeling.Next, we must assign rules values representing the ECA rule de�nitionsgiven in Table 11. For that, it is necessary to explicitly indicate which eventsand actions are allowable in our model. In Promela the mtype construct canbe used to de�ne symbolic values which, in our case, are simply enumerationsrepresenting the range of di�erent events and actions our four rules mightconsist of. The �rst six �elds in ecarule are of type mtype, and, thus, mustbe assigned one of these values. We do this by initializing each rule in rulesas shown in Figure 16. Notice that, after initialization, rules essentiallybecomes a representation of Table 11. Note that the range of rules is 0..3.Therefore, each rule ri in Table 11 is stored in rules[i-1].5.4 The Consideration SetRecall from Section 2 that rule processing begins after a user transactionstimulates some rule triggering event. In Example 7, this initial transac-tion was an update to Matt's and Jasmine's ranks in the emp table. Inour Promela model, we represent this initial transaction by initializing thevariables i_event, i_table, and i_field (each having type mtype) to thevalues update, emp, and rank respectively, as shown in Figure 15. Also recallthat this initial transaction triggered two rules r1 and r4 for consideration.52
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#define N 4 /*defines the number of rules in our model*/mtype = fupdate,retrieve,emp,bonus,empid,name,salary,raiseamnt,rank,allg;/*symbolic constants representing our ADBMS's events, tables and fields*/typedef ecarule f /*record structure for storing rule information*/mtype triggeredby; /*the first three fields represent the event*/mtype triggeredtab; /*which causes this rule to be triggered*/mtype triggeredfie;mtype actionexec; /*the next three fields represent the action*/mtype actiontab; /*that occurs if this rule is executed*/mtype actionfie;bool rtype /*rtype is set to 0 if this is an EA rule*/g; /*rtype is set to 1 if this is an ECA rule*/ecarule rules[N]; /*array for keeping our rule information*/bool c[N]; /*boolean array representing our consideration set*/mtype i_event=update; /*our initial rule triggering transaction*/mtype i_table=emp;mtype i_field=rank;chan selected = [0] of fbyteg;/*communication interface between ADBMS's environment and system*/chan action = [0] of fmtype,mtype,mtype,boolg;/*communication interface between ADBMS's system and environment*/bool done;/*becomes true when consideration set is empty*//*this represents the termination of rule processing*/int temp;/*loop counter variable*/Figure 15: Global declarations in our Promela program.53
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init()frules[0].triggeredby=update; /*assign rule 1's values*/rules[0].triggeredtab=emp;rules[0].triggeredfie=rank;rules[0].actionexec=update;rules[0].actiontab=bonus;rules[0].actionfie=raiseamnt;rules[0].rtype=1;rules[1].triggeredby=update; /*assign rule 2's values*/rules[1].triggeredtab=bonus;rules[1].triggeredfie=raiseamnt;rules[1].actionexec=update;rules[1].actiontab=emp;rules[1].actionfie=salary;rules[1].rtype=0;rules[2].triggeredby=update; /*assign rule 3's values*/rules[2].triggeredtab=emp;rules[2].triggeredfie=salary;rules[2].actionexec=retrieve;rules[2].actiontab=emp;rules[2].actionfie=all;rules[2].rtype=1;rules[3].triggeredby=update; /*assign rule 4's values*/rules[3].triggeredtab=emp;rules[3].triggeredfie=rank;rules[3].actionexec=retrieve;rules[3].actiontab=emp;rules[3].actionfie=all;rules[3].rtype=0;... Figure 16: Initialization of our four ECA rules.54
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Consequently, they were added to Rc, the consideration set. Our globaldeclarations from Figure 15 indicate that Rc is represented as the booleanarray c in our Promela model. When a rule ri is triggered, we represent itsinsertion into Rc by setting the corresponding bit in c (i.e. c[i-1]) to 1.Likewise, when a rule is selected by Starburst's environment and passed toits system for evaluation and (possible) execution, it is removed from Rc bysetting c[i-1] back to 0.Every legal Promela program must consist of at least one main process,init(). This process can initialize any global variables and instantiate otherprocesses. This fact is particularly important since Starburst's environmentand system are modeled as two synchronous processes that will, ultimately,be instantiated by init(). We examine this protocol in more detail lateron. For now, let us consider the initialization of our consideration set. Fig-ure 17 illustrates the rest of the init() process which indicates how thisinitialization can be handled in Promela.Figure 17 introduces two important control ow statements that are anintegral part of any Promela model. Because the semantics of these struc-tures in Promela is inherently di�erent from their semantics in traditionalprogramming languages, they deserve to be explained in more detail. The dostructure allows us to simulate repetition in our model. Within the structureitself we can have multiple execution sequences with each sequence beingpreceded by a \::". In the case of Figure 17 our do structure contains twoguarded sequences. The guard is the expression appearing on the left-handside of the ->. When a guard is evaluated, the statement(s) on the right-handside of the -> is only executed if the guard evaluates to true. Notice that theguarded statements for the do loop in Figure 17 can be selected determinis-tically, since temp must either be < N or >= N. In general, if more than oneguarded sequence is true (and, thus, executable at the same time), Spin exe-cutes each sequence as a separate, possible computation path. Consequently,Spin performs an exhaustive search by checking all possible computationpaths.Figure 17 also shows that we are able to nest structures in Promela. Forinstance, the �rst guarded sequence in the do loop contains an if (i.e. selec-tion) structure. The semantics of this selection structure is similar to thatof the repetition structure. As before, a guarded statement can be executedonly if its guard evaluates to true. When a sequence is executed, the selectionstructure is exited (and, in our case, control reverts back to the do loop); butwhen none of the statements in a selection structure are executable the pro-55
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...temp=0;do:: (temp<N) -> /*while (temp<4) do*/if:: i_event==rules[temp].triggeredby&& i_table==rules[temp].triggeredtab&& i_field==rules[temp].triggeredfie -> c[temp]=1;temp=temp+1/*if the initial transaction triggers rule i, add rule i to*//*Rc by setting c[temp] to 1... increment temp*//*the if structure is exited and control passes back to the do loop*/:: else -> temp=temp+1/*otherwise, do not set c[temp] to 1, and simply increment temp*//*the if structure is exited and control passes back to the do loop*/fi:: (temp>=N) -> breakod;done=0; /*done=0 indicates that Rc is not empty*//*done will be set to 1 only when Rc becomes*//*empty again, i.e. when rule processing terminates*/atomicfrun environment(); run system()gg Figure 17: Initialization of the consideration set.
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temp associated rule action0 r1 c[0]=1; temp=temp+11 r2 temp=temp+12 r3 temp=temp+13 r4 c[3]=1; temp=temp+14 N/A break (exit do loop)Table 27: Initialization of the consideration set.cess blocks until one of the guarded sequences within the structure becomestrue. Since this may never happen, it is possible for a process to block for-ever. There are two solutions to this potential problem. First, we can writeour guarded sequences in a manner that ensures deterministic behavior, aswe did in our do loop. Another option is to introduce the special guardedsequence, else. The else option becomes true (i.e. executable) if and only ifall of the other guarded sequences in the same structure cannot be executed.Thus, in Figure 17, when the �rst (and only) guarded sequence in the ifstructure is false, else becomes true and temp is incremented.Returning to the initialization of our consideration set, we begin by settinga loop counter variable, temp, to 0. Next, the do loop is entered. Then,for each of our four rules, the code checks rules to see if the initial event\matches" the event which triggers that rule. If it does, we set that rule'scorresponding bit in c to 1 and increment the loop counter. Otherwise,the corresponding bit is left set to 0. When temp becomes 4 the secondguarded sequence in the do loop becomes true and control exits the loop.The following example demonstrates this process.Example 27 In Example 7, the initial user transaction triggered two rules,r1 and r4. As a result, we stated that these rules should be added to Rc. Interms of our Promela model Rc is represented by the boolean array c. Thevalue of c is determined by iteratively checking whether or not ri's associatedbit should be set to 1. This iterative process is summarized in Table 27.Pictorially, after initialization, c would appear as shown in Figure 18.Our code initializes the boolean variable done to 0. Only when rule pro-cessing terminates (i.e. Rc becomes empty), will done be reset to 1. Thisfact is particularly important since the problem of checking for terminationof rule processing has now been reduced to simply checking if done even-tually becomes 1. After these initializations the ADBMS has entered envi-57
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1 0 0 10 1 2 3r1 r2 r3 r4
Figure 18: Representation of initial Rc for Example 7 inPromela.ronment state c0 where rule processing initially begins. The init() processnext instantiates two new processes: environment() and system(). Theatomic statement indicates that these two processes are to be executed in anon-interleaved fashion. This notion accurately reects the semantics of ourmodel since we can think of rule processing as synchronized communicationbetween an ADBMS's environment and its system.5.5 States and State TransitionsIn our Promela speci�cation, we model Starburst's environment and systemas two synchronous processes: environment() and system(). State tran-sitions are modeled as single bu�er communication channels. Our globaldeclarations in Figure 15 indicate two such channels: selected and action.When the environment process selects a rule for consideration, it sends thenumber of the rule chosen to the system via the channel selected. Thisrepresents a transition c ri! s from an environment state to a system state.Similarly, the system may or may not choose to execute a selected rule'saction. It communicates this information (along with information about therule's action in the case that it is executed) by way of the action channel.Depending on how the system chooses, this communication represents ans tt! c or s ff! c0 transition from a system state back to an environmentstate. We can ensure that rule processing proceeds in a strictly alternatingfashion by imposing the following restrictions in our Promela model:� When the environment process selects a rule for consideration and sendsit to the system process, it must wait for the system process to com-municate its corresponding action.� When the system process communicates its action (with respect to aselected rule) back to the system, it must wait for the environment58
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process to choose the next rule for consideration and send it to thesystem.Figures 19 and 20 show how our environment and system processes are im-plemented in Promela. Let us see how these processes implement a strictalternation of environment and system moves. The system process is essen-tially in an in�nite do loop which must wait for a message to be sent bythe environment. The �rst statement in this do loop, selected?rulenum,receives the number of the rule selected for consideration by the environ-ment from channel selected and stores it in rulenum. In Promela receivestatements are only executable if a message actually exists in the associatedchannel. If there is no message in the channel, the process must wait for amessage to arrive. Therefore, system() will never be allowed to proceed untilafter environment() selects the �rst rule for consideration and sends the rulenumber, via selected, to the system. This fact is quite important becauseit ensures that the environment always proceeds �rst when rule processingbegins (i.e. when init() initially instantiates system() and environment().5.5.1 The Environment ProcessThe environment process also executes a do loop which will be exited onlyafter rule processing terminates (more on this later). The �rst selectionstructure in environment() is executed immediately after this process isinstantiated and models how Starburst selects a rule for consideration. Wedemonstrate this protocol in the next example.Example 28 Recall that initially r1 and r4 are in Rc. Starburst's envi-ronment must select one of these rules for consideration and pass it to thesystem for possible execution. When the environment process begins its exe-cution, the �rst if structure is evaluated, and one of its guarded statementsexecuted. Table 28 summarizes how Spin determines which statement toexecute.As indicated in this table, only the sequence guarded by c[3]==1 isallowed to execute. This sequence removes r4 from the consideration set(i.e. c[3]=0) and sends the number of the rule selected to the system processvia channel selected (i.e. selected!3). Hence, we enforce the fact that r4has a higher priority than r1 by specifying that r1 can only be selected ifc[3]==0 (i.e. r1 can only be selected if r4 is not in the consideration set).This demonstrates how easy it is to model Starburst's conict resolution59
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proctype environment()f mtype event,table,field;bool fire;/*choose a rule for consideration and send it to system()*/end:do:: if/*since rule 4 has priority over rule 1,*//*rule 1 should only be selected if rule 4 is*//*not in Rc*/:: (c[0]==1) && (c[3]==0) -> c[0]=0;selected!0:: c[1]==1 -> c[1]=0;selected!1:: c[2]==1 -> c[2]=0;selected!2:: c[3]==1 -> c[3]=0;selected!3:: else -> progress: done=1; breakfi;/*after control pass to system(), the environment waits for*//*the system to respond*/action?event,table,field,fire;/*determine which rules were triggered by the system's action*//*this is the same routine as in the init() process*/temp=0;do:: (temp<=N) ->if:: event==rules[temp].triggeredby&& table==rules[temp].triggeredtab&& field==rules[temp].triggeredfie && fire==1 -> c[temp]=1;temp=temp+1:: else -> temp=temp+1;fi:: (temp>N) -> breakododg Figure 19: Environment process in our Promela model.
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proctype system()f int rulenum;mtype event,table,field;end:do /*receive the selected rule from the environment*/:: selected?rulenum;/*determine the selected rule's associated action*/event = rules[rulenum].actionexec;table = rules[rulenum].actiontab;field = rules[rulenum].actionfie;if/*if an EA rule is under consideration always execute its action*/:: rules[rulenum].rtype==0 -> action!event,table,field,1:: rules[rulenum].rtype==1 ->/*if an ECA rule is under consideration, non-deterministically choose*//*whether or not to execute its action*/if:: action!event,table,field,0:: action!event,table,field,1fifiodg Figure 20: System process in our Promela model.guard value actionc[0]==1 && c[3]==0 0 (false) N/Ac[1]==1 0 (false) N/Ac[2]==1 0 (false) N/Ac[3]==1 1 (true) c[3]=0; selected!3else 0 (false) N/ATable 28: Summary of rule selection from Rc (partial prioritization) .61
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guard value actionc[0]==1 1 (true) c[1]=0; selected!1c[1]==1 0 (false) N/Ac[2]==1 0 (false) N/Ac[3]==1 1 (true) c[3]=0; selected!3else 0 (false) N/ATable 29: Summary of rule selection from Rc (no prioritization).policy in Promela. Table 29 summarizes the e�ects of r1 and r4 having thesame priority on Spin's determination of which statement to execute. Nowtwo guarded sequences are executable. As mentioned in Subsection 5.4, Spinveri�es both possibilities. In this fashion, Spin checks all possible executionpaths when performing veri�cation. This could not be done in SMV since itscase-statement is deterministic.Once a rule is selected and sent to the system process, the if structure isexited and control passes to the statement following this structure. Accordingto Figure 19 this would be the statement action?event,table,field,fireimplying that it is the system's turn to execute since environment() mustwait for system() to make a decision regarding the rule currently underconsideration (r4) and send it back to the environment via channel action.5.5.2 The System ProcessIn Example 28 we indicated that the environment chose r4 and sent its cor-responding rule number (i.e. 3) to the system via channel selected. Atthis point the statement selected?rulenum becomes executable. Thus, thesystem process receives the value 3 from this channel and store it in the vari-able rulenum. Referring to Figure 20, system() accesses rules to determinewhat action is associated with this rule.Finally, the system must decide whether or not it should execute the rule'saction. This determination is handled by a nested selection structure. If anEA rule is under consideration (i.e. rtype==0), then the system executes thestatement action!event,table,field,1 where 1 indicates that the rule'saction was executed. If an ECA rule is under consideration (i.e. rtype==1),system() non-deterministically chooses to execute either:� action!event,table,field,0 (do not execute this rule's action), or62
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guard value actionN/A N/A event=rules[3].actexecN/A N/A table=rules[3].acttableN/A N/A field=rules[3].actfieldrules[3].rtype==0 1 (true) action!retreive,emp,all,1Table 30: Summary of system process upon receiving r4.� action!event,table,field,1 (execute this rule's action).As before, when performing veri�cation, Spin actually analyzes both situa-tions. The following example illustrates this entire process.Example 29 Let us go back to the point where system() receives the ruleselected by environment() for consideration. Table 30 summarizes whichstatements are subsequently executed by system(). As shown in this ta-ble, the system process sends a message back to the environment processindicating r4's action, and the fact that this action was executed.Upon completing this process, system() returns back to the top of thedo loop. There it waits for the next message to be sent by environment().Realize, however, that if rule processing terminates, system() is left waitingforever. We handle this problem by preceding the do loop with an end: label.This label alerts the Spin veri�er that we expected this situation to arise andthat it should not report an error.5.5.3 The Environment Process revisitedRecall that environment() was awaiting system()'s decision regarding ruler4. The statement action?event,table,field,fire takes the message sentby system() and stores the actual values (i.e. retrieve, emp, all, 1) in thecorresponding variables. Next, the environment must determine which newrules (if any) r4's action triggered. As shown in Figure 19 this is handledin almost exactly the same manner as demonstrated in Example 27. Theonly di�erence is that we must make an additional check to see if the systemactually executed the previous rule's action. If it did not, then clearly no newrules will be triggered. In our case, r4's action was executed. However, recallfrom Example 7, that its action did not trigger any new rules. Therefore,the next rule which is chosen for consideration is r1. The process described63
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in the three preceding subsections is iterative and continues until all the bitsin c become 0. When this happens the environment won't have any rules toselect for consideration. Thus, the else statement becomes executable. Aswe alluded to earlier, done=1 indicates rule processing terminates and breakforces the environment process to exit its do loop.5.6 ADBMS Veri�cation using SpinThe Promela program presented above describes a model of rule processingfor Example 7. In order to model a di�erent set of rules, we would need towrite another Promela program for that particular rule set. Clearly, this canbecome quite inconvenient, especially since it is often the case that we wish toexamine the e�ect that simple changes to our rule set have on rule behavior(such as the e�ect of adding a particular rule to a rule set on rule behavior).Fortunately, we can easily isolate patterns in our Promela program. Thismakes it feasible to automatically generate Promela models of rule process-ing. For this reason, we have developed an interactive tool for generatingPromela rule processing models for the Starburst rule system. This tool wasprimarily an experimental e�ort; however, we hope that our endeavors mo-tivate future, more dedicated e�orts along these lines. We used our tool togenerate models of rules processing for rule sets of various sizes and complex-ity. Then we analyzed properties such as termination, conuence, and ruleintegrity constraints.5.6.1 TerminationChecking that a given set of rules is guaranteed to terminate is surprisinglysimple with Spin. We check for termination by including the progress: labelin the guarded statement else -> progress: done==1; break. Recall thatthis statement is only executable if all of the bits in the boolean array c areset to 0; but this means that Rc is empty and rule processing has terminated.If rule processing never terminates, c always has at least one bit set to 1.Consequently, if rule processing never terminates, the else statement is neverexecuted and the progress: label is never reached! We can direct Spin toreport an error whenever this situation arises. Such an error would indicatethat rule processing may not terminate. On the other hand, if Spin reportsno errors, then rule processing is guaranteed to terminate.64
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It is important to keep in mind that no matter which rule behavior prop-erties we analyze only positive results obtained during veri�cation are con-clusive. For instance, we can be assured of a terminating rule set providedthat Spin reports no errors. An error report, however, merely indicates thatrule processing may not terminate. If this occurs it is up to the rule designerto interactively evaluate the results returned by Spin (such as the counterex-ample produced) and draw his or her own conclusions. As suggested in [1], itmay very well be the case that errors reported by veri�cation are cases thatare unlikely or never occur in the actual rule system.5.6.2 Rule Integrity ConstraintsDetermining whether the consideration of one rule eventually leads to con-sideration of another rule is also quite simple in Spin. We handle this usingthe LTL formula [](c[i]==1 -> <>(c[j]==1)) where i,j < N. Mnemoni-cally, this formula reads \For all paths, it is always the case that wheneverri is under consideration, then rj is eventually under consideration.". Wecan save this formula in a �le and import it directly into our Promela modelusing the #include command, as shown in the model of Example 7 given inAppendix A.5.6.3 ConuenceIn [1] it is suggested that checking conuence for a rule set is a di�cult prob-lem at best. Nevertheless, [1] provides a number of useful theorems and algo-rithms which, ultimately, can aid rule designers in their e�orts to achieve aconuent rule set. Speci�cally, they propose a conuence requirement which,if satis�ed, guarantees that a given rule set is conuent. Additionally, theyprovide an algorithm for determining if a set of rules satis�es that conuencerequirement. This algorithm takes as input two rules, ri and rj, such thatboth rules have the same priority. The output of this algorithm is two setsof rules, R1 and R2. Then, in order to meet the conuence requirement, itis necessary to show that for each pair of rules r 2 R1 and r0 2 R2, r and r0commute (we discuss how to determine if two rules commute in a moment).The di�culty in applying this algorithm comes from the fact that it must beperformed for all rule pairs, ri and rj, such that both rules have the samepriority. As pointed out in [1], this is an extremely conservative approachand could be made more e�cient by eliminating \unreasonable" cases with65
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additional analysis. Consequently, we believe rule analysis in our frameworkcan be e�ectively used in conjunction with the conuence requirement al-gorithm by isolating certain rule pairs for which it is not even necessary toapply the conuence requirement algorithm, and providing a \tool box" ofspeci�cations for determining whether a pair of rules commute.5.6.4 A Tool Box of PropertiesAs in [1], conuence analysis under our framework is a step-by-step, userinteractive veri�cation process. We supply the rule designer with a \toolbox" of useful speci�cations which aid him or her in this process. Thesespeci�cations can then be used to draw conclusions regarding a rule set'ssatisfaction of the conuence requirement (or lack thereof).We �rst address the problem of eliminating certain rule pairs for whichit is not necessary to apply the conuence requirement algorithm. In [1],they observe that in actuality it is not necessary to apply this algorithmto all pairs. As mentioned earlier, their algorithm constitutes an extremelyconservative approach. In fact, the algorithm need only be applied to all rulepairs, ri and rj, such that both rules have the same priority and both rules areunder consideration at the same time. In terms of our framework, this wouldmean that we must only consider pairs of rules that are under considerationtogether at some environment state, c 2 C. We can easily isolate such rulesin our Promela models by checking our boolean array c each time we enterthe environment process. It would then be up to the user to determine ifthe two rules have the same priority. For instance, in Example 7, r1 andr4 were both under consideration at the same time. However, since r4 has ahigher priority than r1, we would simply ignore this situation. Moreover, thisproperty is expressible in EATL. Eliminating rule pairs in such a systematicfashion could make conuence analysis yield more accurate results and makeconuence analysis e�orts more e�ective.In [1] a number of su�cient conditions for the non-commutativity of rulesare given. Speci�cally, rules ri and rj may be non-commutative if any of thefollowing hold (if none of these hold, then ri and rj do commute):1. ri's consideration can eventually lead to rj's consideration,2. ri's actions can a�ect what rj's reads (i.e. rj's data retrieval),3. ri's insertion actions can a�ect rj's updates or deletions,66



www.manaraa.com

4. ri's updates can a�ect rj's updates, and5. any of the above when we reverse ri and rj.We are currently working on developing a tool box of speci�cations for ana-lyzing such properties. We believe that these properties can be convenientlyexpressed in LTL and e�ectively analyzed by Spin.5.6.5 Results of our ADBMS Veri�cationWe analyzed termination, rule integrity constraints, and deterministic order-ing properties for a set of twenty ECA rules. In order to test the accuracyof our model we seeded it with various violations to these properties. Inall cases, Spin agged these errors and provided a visual counterexample ofwhere the property failed. As suggested previously, Spin's countertrace fa-cility is extremely informative. For instance, in the case of non-termination,Spin agged the violation and showed exactly which rule caused it. In ad-dition, along with the countertrace, Spin provides verbose details of thePromela model's execution. Since this feature displays the values of eachvariable during the run of the program, it can be used for interactive debug-ging.As expected, the amount of time and memory needed to perform veri�ca-tion appears to be directly dependent on the amount of non-determinism weintroduced in our model. Initially we designed our twenty rules to trigger ina \chain-like" fashion: r1 ! r2 ! : : :! r20. When checking for termination,our model required about 5,000 states. We then changed the �rst ten rules toEA rules. Of course this makes our model more deterministic since for theseten rules, there is only one possible execution of their actions. As expected,the size of the state space decreased to about 9,000 states.As a �nal test, we introduced more non-determinism by decomposingour chain structure. This meant that at any given time during rule pro-cessing it was likely that two or more (non-prioritized) rules would be underconsideration at the same time. The e�ect of this non-determinism causedthe state space to grow quite dramatically. In one case the size of the statespace reached 215,000 states. This e�ect clearly indicates that, as with manysystems, ours is susceptible to the \state-explosion" problem [10]. Upon pri-oritizing these rules (i.e. reducing the amount of non-determinism) the statespace decreased considerably. 67
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Our current analysis e�orts are focused on studying the scalability ofour Model Checking scheme. In particular, we wish to determine how largeof a rule set we can reasonably analyze. We speculate the answer to thisquestion is not entirely conclusive. Clearly, our current results show that thenumber of rules we can analyze is a function of those rule's interdependency.Still, there are a variety of ways to overcome the problem of Model Checkinglarger rule sets. For example, [1] suggests that it often the case that largerule sets can be \partitioned" into smaller, independent groups of rules. Sincerules in one group could not a�ect the behavior of rules in another group,each partition could be analyzed separately, hence alleviating the size of thestate space. Such an approach would also be incremental. Thus, if a rule isadded to one group, analysis would need to be repeated only for that group.Ultimately, we feel bene�ts such as these make Model Checking a suitableand e�ective approach to analyzing rule behavior.6 ConclusionsThe purpose of this paper was to propose a framework for analyzing rule be-havior in active database management systems. As our examples have shown,analysis of rule behavior can be quite di�cult, even in seemingly simple sit-uations. To make matters worse, many of the properties that rule systemdesigners are interested in are undecidable in the general case. Nevertheless,our work indicates that it is possible to develop methods and tools whichcan, at the very least, aid designers in their e�orts. Speci�cally, we sug-gested a Model Checking methodology as a feasible, practical, and e�ectiveapproach for analyzing rule behavior. Historically, this approach has beendirected towards verifying concurrent, reactive systems. We have modeledADBMSs as such reactive systems and their subtle behaviors are reminiscentof those which occur in the design and implementation of concurrent systems.In order to apply Model Checking to our problem, it was �rst necessary todesign a framework that allowed us to model an ADBMS in a �nite numberof states. We believe our model of rule processing presented in Section 3 isan e�ective solution to this problem. In particular, we were able to abstractdetails about data stored in an ADBMS's database at an adequate level andfocus our e�orts towards analyzing the behavior of the rules themselves. Byseparating decisions made by an ADBMS's environment and its underly-ing system our methodology provides a generic framework for modeling any68
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ADBMS, regardless of its operational semantics. By considering all possiblerule processing scenarios, our model accurately reects anything that mayoccur in the actual rule system.Moreoever, we have examined the possibility of applying existing ModelChecking tools. In addition to applying Spin towards this e�ort, we haveexamined the performance of other model checkers under our general ar-chitecture. Speci�cally, we attempted to use the Symbolic Model Veri�er(SMV) [15]. We found that SMV's input language did not easily lend itselftowards modeling such things as rule priorities. Thus, we were unable toe�ectively model Starburst's conict resolution policy in SMV. Still, we ex-amined SMV's performance at verifying models of non-prioritized rule sets.In this case, SMV's performance degraded noticeably as the number of rulesincreased.In the future, we plan to examine a number of possible improvementsto our framework. In addition to our current work mentioned at the endof Section 5 we would like to add more detail to our Promela models inan e�ort to obtain more �ne-grained rule analysis. For instance, by addingan additional selection structure in our environment process, we can easilysimulate rule untriggering. Such a feature would indicate that it is possiblefor one rule's action to cause another rule, previously in Rc to be removedfrom Rc before it is ever selected for consideration.We are also interested in exploring techniques for combating the ob-served state-explosion, caused by increased rule interdependency and non-determinism. Along these lines, we examine the possibility of �lter-basedre�nement [13], to \�lter out" or eliminate unlikely or impossible computa-tion paths.While GUIs are fashionable at the time, there are several good reasonsfor having a domain-speci�c language (DSL) for formulating rule systems.For example, if a rule system is represented as a program then one can useconventional tools of program analysis such as partial evaluation and abstractinterpretation. Ideally, such a DSL would be based on several actual RDLsin order to allow simple translations of real rule systems into such a DSL.Finally, we wish to provide additional enhancements to our user inter-face. Such enhancements would include, among other things, more e�cientcode generation, additional options which allow users to easily de�ne theirown, customized speci�cations, and a standard API for creating \libraries"of di�erent ADBMS environments. 69
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A Promela Speci�cation of Example 7#define N 4 /*defines the number of rules in our model*/mtype = fupdate,retrieve,emp,bonus,empid,name,salary,raiseamnt,rank,allg;/*symbolic constants representing our ADBMS's events, tables and fields*/typedef ecarule f /*record structure for storing rule information*/mtype triggeredby; /*the first three fields represent the event*/mtype triggeredtab; /*which causes this rule to be triggered*/mtype triggeredfie;mtype actionexec; /*the next three fields represent the action*/mtype actiontab; /*that occurs if this rule is executed*/mtype actionfie;bool rtype /*rtype is set to 0 if this is an EA rule*/g; /*rtype is set to 1 if this is an ECA rule*/ecarule rules[N]; /*array for keeping our rule information*/bool c[N]; /*boolean array representing our consideration set*/mtype i_event=update; /*our initial rule triggering transaction*/mtype i_table=emp;mtype i_field=rank;chan selected = [0] of fbyteg;/*communication interface between ADBMS's environment and system*/chan action = [0] of fmtype,mtype,mtype,boolg;/*communication interface between ADBMS's system and environment*/bool done;/*becomes true when consideration set is empty*//*this represents the termination of rule processing*/int temp;/*loop counter variable*/init()f rules[0].triggeredby=update; /*assign rule 1's values*/rules[0].triggeredtab=emp;rules[0].triggeredfie=rank;rules[0].actionexec=update; 70
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rules[0].actiontab=bonus;rules[0].actionfie=raiseamnt;rules[0].rtype=1;rules[1].triggeredby=update; /*assign rule 2's values*/rules[1].triggeredtab=bonus;rules[1].triggeredfie=raiseamnt;rules[1].actionexec=update;rules[1].actiontab=emp;rules[1].actionfie=salary;rules[1].rtype=0;rules[2].triggeredby=update; /*assign rule 3's values*/rules[2].triggeredtab=emp;rules[2].triggeredfie=salary;rules[2].actionexec=retrieve;rules[2].actiontab=emp;rules[2].actionfie=all;rules[2].rtype=1;rules[3].triggeredby=update; /*assign rule 4's values*/rules[3].triggeredtab=emp;rules[3].triggeredfie=rank;rules[3].actionexec=retrieve;rules[3].actiontab=emp;rules[3].actionfie=all;rules[3].rtype=0;temp=0;do:: (temp<N) -> /*while (temp<4) do*/if:: i_event==rules[temp].triggeredby&& i_table==rules[temp].triggeredtab&& i_field==rules[temp].triggeredfie -> c[temp]=1;temp=temp+1/*if the initial transaction triggers rule i, add rule i to*//*Rc by setting c[temp] to 1... increment temp*//*the if structure is exited and control passes back to the do loop*/71
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:: else -> temp=temp+1/*otherwise, do not set c[temp] to 1, and simply increment temp*//*the if structure is exited and control passes back to the do loop*/fi:: (temp>=N) -> breakod;done=0; /*done=0 indicates that Rc is not empty*//*done will be set to 1 only when Rc becomes*//*empty again, i.e. when rule processing terminates*/atomicfrun environment(); run system()ggproctype environment()f mtype event,table,field;bool fire;/*choose a rule for consideration and send it to system()*/end:do:: if/*since rule 4 has priority over rule 1,*//*rule 1 should only be selected if rule 4 is*//*not in Rc*/:: (c[0]==1) && (c[3]==0) -> c[0]=0;selected!0:: c[1]==1 -> c[1]=0;selected!1:: c[2]==1 -> c[2]=0;selected!2:: c[3]==1 -> c[3]=0;selected!3:: else -> progress: done=1; breakfi;/*after control pass to system(), the environment waits for*//*the system to respond*/ 72
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action?event,table,field,fire;/*determine which rules were triggered by the system's action*//*this is the same routine as in the init() process*/temp=0;do:: (temp<=N) ->if:: event==rules[temp].triggeredby&& table==rules[temp].triggeredtab&& field==rules[temp].triggeredfie && fire==1 -> c[temp]=1;temp=temp+1:: else -> temp=temp+1;fi:: (temp>N) -> breakododgproctype system()f int rulenum;mtype event,table,field;end:do /*receive the selected rule from the environment*/:: selected?rulenum;/*determine the selected rule's associated action*/event = rules[rulenum].actionexec;table = rules[rulenum].actiontab;field = rules[rulenum].actionfie;if/*if an EA rule is under consideration always execute its action*/:: rules[rulenum].rtype==0 -> action!event,table,field,1:: rules[rulenum].rtype==1 ->/*if an ECA rule is under consideration, non-deterministically choose*//*whether or not to execute its action*/if:: action!event,table,field,073
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:: action!event,table,field,1fifiodggReferences[1] A. Aiken, J. Widom, and J. M. Hellerstein. Behavior of database productionrules: Termination, conuence, and observable determinism. In Proceedings ofthe ACM SIGMOD International Conference on Management of Data, pages59{68, San Diego, California, June 1992.[2] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporallogic. In COMPOS'97 International Symposium: CompositionalityThe Sig-ni�cant Di�erence, Germany, September 1997. DRAFT.[3] E. Baralis and J. Widom. An algebraic approach to rule analysis in expertdatabase systems. In Proceedings of the Twentieth International Conferenceon Very Large Data Bases, Santiago, Chile, 1994.[4] Bell Labs. Basic Spin manual, 1997. URL: http://netlib.bell-labs.com/netlib/spin/whatispin.html.[5] J. C. Brad�eld. Verifying Temporal Properties Of Systems. Birkhaeuser,Boston, Mass., 1991.[6] R. E. Bryant. Graph-based algorithms for boolean function manipulation.IEEE Transactions on Computers, C-35(8), 1986.[7] J.R. Burch, E.M. Clarke, and K.L. McMillan. Symbolic model checking: 1020states and beyond. Information and Computing, 98(2):142{170, June 1992.[8] S. Ceri and J. Widom. Deriving production rules for constraint maintenance.In Proceedings of the Sixteenth International Conference on Very Large DataBases, pages 566{577, Brisbane, Australia, August 1990.[9] E. M. Clarke and E. M. Emerson. Synthesis of synchronization skeletons forbranching time temporal logic. In D. Kozen, editor, Proc. Logic of Programs,number 131 in LNCS. Springer Verlag, 1981.74



www.manaraa.com

[10] E. M. Clarke et al. Veri�cation of the futurebus+ cache coherence protocol. InProceedings of the Eleventh International Symposium on Computer HardwareDescription Languages and their Applications, North-Holland, April 1993.[11] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction.In Conference Record of the Nineteenth Annual ACM SIGPLAN-SIGACTSymposium on Principles of Programming Languages, pages 343{354, Albu-querque, New Mexico, January 1992.[12] K. R. Dittrich, S. Gatzui, and A. Geppert. The active database manage-ment system manifesto: A rulebase of adbms features. In Second Interna-tional Workshop on Rules in Database Systems, pages 3{20, Athens, Greece,September 1995.[13] M.B. Dwyer and D.A. Schmidt. Limiting state explosion with �lter-basedre�nement. In Proceedings of the 1st International Workshop on Veri�cation,Abstract Interpretation and Model Checking, October 1997.[14] D. R. McCarthy and U. Dayal. The architecture of an active database manage-ment system. In Proceedings of the ACM SIGMOD International Conferenceon Management of Data, pages 215{224, Portland, Oregon, May 1989.[15] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,1993.[16] A. Pnueli. Applications of temporal logic to the speci�cation and veri�cationof reactive systems: a survey of current trends. In J.W. de Bakker, editor,Current Trends in Concurrency, volume 224 of Lecture Notes in ComputerScience, pages 510{584. Springer-Verlag, 1985.[17] C. Sterling. Handbook of Logic in Computer Science, volume 2, pages 478{551.Clarendon Press, Oxford, 1992.[18] M. Stonebreaker. The integration of rule systems and database systems. IEEETransactions on Knowledge and Data Engineering, 4(5):415{423, October1992. Invited Paper.[19] M. Stonebreaker, editor. Readings in Database Systems, chapter 4, pages345{349. Morgan Kaufman Publishers, 2 edition, 1994.[20] J. Widom and S. Ceri, editors. Active Database Systems: Triggers and Rulesfor Advanced Data Processing, chapter 4, pages 32{33,88{108. Morgan Kauf-man Publishers, 1996. 75



www.manaraa.com

[21] J. Widom, R. J. Cochrance, and B. G. Lindsay. Implementing set-orientedproduction rules as an extension to starburst. In Proceedings of the Seven-teenth International Conference on Very Large Data Bases, pages 275{285,Barcelona, Spain, September 1991.[22] J. Widom and S. J. Finkelstein. Set-oriented production rules in relationaldatabase systems. In Proceedings of the ACM SIGMOD International Con-ference on Management of Data, pages 259{270, Atlantic City, New Jersey,May 1990.

76


